These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
359 related articles for article (PubMed ID: 9813118)
1. Internal motion of supercoiled DNA: brownian dynamics simulations of site juxtaposition. Jian H; Schlick T; Vologodskii A J Mol Biol; 1998 Nov; 284(2):287-96. PubMed ID: 9813118 [TBL] [Abstract][Full Text] [Related]
2. Dynamics of site juxtaposition in supercoiled DNA. Huang J; Schlick T; Vologodskii A Proc Natl Acad Sci U S A; 2001 Jan; 98(3):968-73. PubMed ID: 11158579 [TBL] [Abstract][Full Text] [Related]
3. The effect of ionic conditions on the conformations of supercoiled DNA. II. Equilibrium catenation. Rybenkov VV; Vologodskii AV; Cozzarelli NR J Mol Biol; 1997 Mar; 267(2):312-23. PubMed ID: 9096228 [TBL] [Abstract][Full Text] [Related]
4. Efficient chain moves for Monte Carlo simulations of a wormlike DNA model: excluded volume, supercoils, site juxtapositions, knots, and comparisons with random-flight and lattice models. Liu Z; Chan HS J Chem Phys; 2008 Apr; 128(14):145104. PubMed ID: 18412482 [TBL] [Abstract][Full Text] [Related]
5. Effects of Na+ and Mg2+ on the structures of supercoiled DNAs: comparison of simulations with experiments. Gebe JA; Delrow JJ; Heath PJ; Fujimoto BS; Stewart DW; Schurr JM J Mol Biol; 1996 Sep; 262(2):105-28. PubMed ID: 8831783 [TBL] [Abstract][Full Text] [Related]
6. The twist, writhe and overall shape of supercoiled DNA change during counterion-induced transition from a loosely to a tightly interwound superhelix. Possible implications for DNA structure in vivo. Bednar J; Furrer P; Stasiak A; Dubochet J; Egelman EH; Bates AD J Mol Biol; 1994 Jan; 235(3):825-47. PubMed ID: 8289322 [TBL] [Abstract][Full Text] [Related]
7. Evaluating changes of writhe in computer simulations of supercoiled DNA. de Vries R J Chem Phys; 2005 Feb; 122(6):064905. PubMed ID: 15740406 [TBL] [Abstract][Full Text] [Related]
8. The influence of salt on the structure and energetics of supercoiled DNA. Schlick T; Li B; Olson WK Biophys J; 1994 Dec; 67(6):2146-66. PubMed ID: 7696459 [TBL] [Abstract][Full Text] [Related]
9. Conformational response of supercoiled DNA to confinement in a nanochannel. Lim W; Ng SY; Lee C; Feng YP; van der Maarel JR J Chem Phys; 2008 Oct; 129(16):165102. PubMed ID: 19045317 [TBL] [Abstract][Full Text] [Related]
10. Conformational and thermodynamic properties of supercoiled DNA. Vologodskii AV; Levene SD; Klenin KV; Frank-Kamenetskii M; Cozzarelli NR J Mol Biol; 1992 Oct; 227(4):1224-43. PubMed ID: 1433295 [TBL] [Abstract][Full Text] [Related]
12. Effect of supercoiling on the juxtaposition and relative orientation of DNA sites. Vologodskii A; Cozzarelli NR Biophys J; 1996 Jun; 70(6):2548-56. PubMed ID: 8744294 [TBL] [Abstract][Full Text] [Related]
13. Conformational and thermodynamic properties of supercoiled DNA. Vologodskii AV; Cozzarelli NR Annu Rev Biophys Biomol Struct; 1994; 23():609-43. PubMed ID: 7919794 [TBL] [Abstract][Full Text] [Related]
14. Monte Carlo analysis of the conformation of DNA catenanes. Vologodskii AV; Cozzarelli NR J Mol Biol; 1993 Aug; 232(4):1130-40. PubMed ID: 8371271 [TBL] [Abstract][Full Text] [Related]
15. Salt effects on the structure and internal dynamics of superhelical DNAs studied by light scattering and Brownian dynamics. Hammermann M; Steinmaier C; Merlitz H; Kapp U; Waldeck W; Chirico G; Langowski J Biophys J; 1997 Nov; 73(5):2674-87. PubMed ID: 9370461 [TBL] [Abstract][Full Text] [Related]
16. Brownian dynamics simulations of supercoiled DNA with bent sequences. Chirico G; Langowski J Biophys J; 1996 Aug; 71(2):955-71. PubMed ID: 8842235 [TBL] [Abstract][Full Text] [Related]
17. Transcription-driven twin supercoiling of a DNA loop: a Brownian dynamics study. Mielke SP; Fink WH; Krishnan VV; Grønbech-Jensen N; Benham CJ J Chem Phys; 2004 Oct; 121(16):8104-12. PubMed ID: 15485274 [TBL] [Abstract][Full Text] [Related]
18. The effect of ionic conditions on the conformations of supercoiled DNA. I. Sedimentation analysis. Rybenkov VV; Vologodskii AV; Cozzarelli NR J Mol Biol; 1997 Mar; 267(2):299-311. PubMed ID: 9096227 [TBL] [Abstract][Full Text] [Related]
19. Random walk models for DNA synapsis by resolvase. Sessions RB; Oram M; Szczelkun MD; Halford SE J Mol Biol; 1997 Jul; 270(3):413-25. PubMed ID: 9237907 [TBL] [Abstract][Full Text] [Related]