These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 9813257)

  • 1. Ethanol is a potent inhibitor of canine cerebrospinal fluid production: an acute and reversible effect.
    Javaheri S; Corbett W
    Brain Res; 1998 Nov; 812(1-2):91-6. PubMed ID: 9813257
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bumetanide decreases canine cerebrospinal fluid production. In vivo evidence for NaCl cotransport in the central nervous system.
    Javaheri S; Wagner KR
    J Clin Invest; 1993 Nov; 92(5):2257-61. PubMed ID: 8227341
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Different effects of omeprazole and Sch 28080 on canine cerebrospinal fluid production.
    Javaheri S; Corbett WS; Simbartl LA; Mehta S; Khosla A
    Brain Res; 1997 Apr; 754(1-2):321-4. PubMed ID: 9134992
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduced cerebrospinal fluid production in the rat and rabbit by diatrizoate. Ventriculocisternal perfusion.
    Harnish PP; Samuel K
    Invest Radiol; 1988 Jul; 23(7):534-6. PubMed ID: 3170143
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acute effect of glycerol on net cerebrospinal fluid production in dogs.
    Zoghbi HY; Okumura S; Laurent JP; Fishman MA
    J Neurosurg; 1985 Nov; 63(5):759-62. PubMed ID: 4056879
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Closed ventriculocisternal perfusion to determine CSF production rate and pressure.
    Artru AA; Hornbein TF
    Am J Physiol; 1986 Nov; 251(5 Pt 2):R996-9. PubMed ID: 3777224
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Total and regional cerebral blood flow during perfusion from the lateral ventricle to the cisterna magna in the conscious dog: effect of hemorrhagic hypotension and retransfusion on cerebral blood flow.
    Fritschka E; Ferguson JL; Spitzer JJ
    Circ Shock; 1980; 7(3):333-42. PubMed ID: 7449048
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enflurane causes a prolonged and reversible increase in the rate of CSF production in the dog.
    Artru AA; Nugent M; Michenfelder JD
    Anesthesiology; 1982 Oct; 57(4):255-60. PubMed ID: 7125260
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Perfusion fluids used in neurosurgery affect cerebrospinal fluid and surrounding brain parenchyma in the rat ventriculocisternal perfusion model.
    Doi K; Morioka Y; Nishimura M; Kawano T; Harada D; Naito S; Yamauchi A
    J Toxicol Sci; 2009 Oct; 34(5):511-8. PubMed ID: 19797859
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Angiotensin II decreases the rate of production of cerebrospinal fluid.
    Maktabi MA; Stachovic GC; Faraci FM
    Brain Res; 1993 Mar; 606(1):44-9. PubMed ID: 8462002
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of halothane and fentanyl on the rate of CSF production in dogs.
    Artru AA
    Anesth Analg; 1983 Jun; 62(6):581-5. PubMed ID: 6846881
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of centrally administered gamma-aminobutyric acid on metabolic function.
    Kneussl MP; Pappagianopoulos P; Hoop B; Kazemi H
    J Appl Physiol (1985); 1986 Aug; 61(2):472-6. PubMed ID: 3091566
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ventriculocisternal cerebrospinal perfusion in unanesthetized fetal lambs.
    Bissonnette JM; Hohimer AR; Richardson BS
    J Appl Physiol Respir Environ Exerc Physiol; 1981 Apr; 50(4):880-3. PubMed ID: 7263372
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New experimental model of acute aqueductal blockage in cats: effects on cerebrospinal fluid pressure and the size of brain ventricles.
    Klarica M; Oresković D; Bozić B; Vukić M; Butković V; Bulat M
    Neuroscience; 2009 Feb; 158(4):1397-405. PubMed ID: 19111908
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of central administration of angiotensin II on cerebrospinal fluid formation in rabbits.
    Chodobski A; Szmydynger-Chodobska J; Segal MB; McPherson IA
    Prog Brain Res; 1992; 91():19-22. PubMed ID: 1410404
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sources of error in measuring cerebrospinal fluid formation by ventriculocisternal perfusion.
    Martins AN; Newby N; Doyle TF
    J Neurol Neurosurg Psychiatry; 1977 Jul; 40(7):645-50. PubMed ID: 410910
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potential error in ventriculocisternal perfusion method for determination of cerebrospinal fluid formation rate in cats.
    Maraković J; Oresković D; Jurjević I; Rados M; Chudy D; Klarica M
    Coll Antropol; 2011 Jan; 35 Suppl 1():73-7. PubMed ID: 21648314
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reversible depression of ventilation and cardiovascular function by ventriculocisternal perfusion with gamma-aminobutyric acid in dogs.
    Kneussl MP; Pappagianopoulos P; Hoop B; Kazemi H
    Am Rev Respir Dis; 1986 Jun; 133(6):1024-8. PubMed ID: 3717757
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of cerebrospinal fluid production in the development of communicating hydrocephalus.
    James AE; Epstein M; Novak G; Burns B
    Radiology; 1977 Jan; 122(1):143-7. PubMed ID: 830324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cisterna magna microdialysis of 22Na to evaluate ion transport and cerebrospinal fluid dynamics.
    Knuckey NW; Fowler AG; Johanson CE; Nashold JR; Epstein MH
    J Neurosurg; 1991 Jun; 74(6):965-71. PubMed ID: 2033458
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.