These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 9813297)

  • 1. Impairment by hexoses of the utilization of maltose by Saccharomyces cerevisiae.
    Heredia CF
    Biochim Biophys Acta; 1998 Sep; 1425(1):151-8. PubMed ID: 9813297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Galactose inhibition of the constitutive transport of hexoses in Saccharomyces cerevisiae.
    Nevado J; Navarro MA; Heredia CF
    Yeast; 1993 Feb; 9(2):111-9. PubMed ID: 8465600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Galactose induces in Saccharomyces cerevisiae sensitivity of the utilization of hexoses to inhibition by D-glucosamine.
    Nevado J; Heredia CF
    Can J Microbiol; 1996 Jan; 42(1):6-11. PubMed ID: 8595596
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glucose-induced cAMP signalling in yeast requires both a G-protein coupled receptor system for extracellular glucose detection and a separable hexose kinase-dependent sensing process.
    Rolland F; De Winde JH; Lemaire K; Boles E; Thevelein JM; Winderickx J
    Mol Microbiol; 2000 Oct; 38(2):348-58. PubMed ID: 11069660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transport and transport-associated phosphorylation of galactose in Saccharomyces cerevisiae.
    van Steveninck J
    Biochim Biophys Acta; 1972 Aug; 274(2):575-83. PubMed ID: 4558852
    [No Abstract]   [Full Text] [Related]  

  • 6. The influence of nickelous ions on carbohydrate transport in yeast cells.
    van Steveninck J
    Biochim Biophys Acta; 1966 Sep; 126(1):154-62. PubMed ID: 5970535
    [No Abstract]   [Full Text] [Related]  

  • 7. Characterisation of mammalian GLUT glucose transporters in a heterologous yeast expression system.
    Wieczorke R; Dlugai S; Krampe S; Boles E
    Cell Physiol Biochem; 2003; 13(3):123-34. PubMed ID: 12876383
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Properties of the hexose transport systems of Aspergillus nidulans.
    Mark CG; Romano AH
    Biochim Biophys Acta; 1971 Oct; 249(1):216-26. PubMed ID: 4946621
    [No Abstract]   [Full Text] [Related]  

  • 9. Metabolic imbalance in a Saccharomyces cerevisiae mutant unable to grow on fermentable hexoses.
    Alonso A; Pascual C; Herrera L; Gancedo JM; Gancedo C
    Eur J Biochem; 1984 Jan; 138(2):407-11. PubMed ID: 6365545
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulatory properties of the constitutive hexose transport in Saccharomyces cerevisiae.
    Serrano R; Delafuente G
    Mol Cell Biochem; 1974 Dec; 5(3):161-71. PubMed ID: 4614087
    [No Abstract]   [Full Text] [Related]  

  • 11. Sugar transport in Saccharomyces cerevisiae.
    Lagunas R
    FEMS Microbiol Rev; 1993 Apr; 10(3-4):229-42. PubMed ID: 8318258
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transport of hexoses in yeast. Re-examination of the sugar phosphorylation hypothesis with a new experimental approach.
    Nevado J; Navarro MA; Heredia CF
    Yeast; 1994 Jan; 10(1):59-65. PubMed ID: 8203152
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for a carrier conformational change associated with sugar transport in erythrocytes.
    Krupka RM
    Biochemistry; 1971 Mar; 10(7):1143-8. PubMed ID: 5553320
    [No Abstract]   [Full Text] [Related]  

  • 14. Strain variations in the utilization of hexoses by Ehrlich ascites tumor cells.
    Letnansky K
    Biochim Biophys Acta; 1968 Oct; 165(3):364-73. PubMed ID: 5737930
    [No Abstract]   [Full Text] [Related]  

  • 15. Carbon catabolite repression of invertase during batch cultivations of Saccharomyces cerevisiae: the role of glucose, fructose, and mannose.
    Dynesen J; Smits HP; Olsson L; Nielsen J
    Appl Microbiol Biotechnol; 1998 Nov; 50(5):579-82. PubMed ID: 9866176
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Absorption of carbohydrates by intestine of Ascaris lumbricoides in vitro.
    Sanhueza P; Palma R; Oberhauser E; Orrego H; Parsons DS; Salinas A
    Nature; 1968 Sep; 219(5158):1062-3. PubMed ID: 5673367
    [No Abstract]   [Full Text] [Related]  

  • 17. The Crabtree effect: a regulatory system in yeast.
    De Deken RH
    J Gen Microbiol; 1966 Aug; 44(2):149-56. PubMed ID: 5969497
    [No Abstract]   [Full Text] [Related]  

  • 18. Metabolic signals trigger glucose-induced inactivation of maltose permease in Saccharomyces.
    Jiang H; Medintz I; Zhang B; Michels CA
    J Bacteriol; 2000 Feb; 182(3):647-54. PubMed ID: 10633097
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exceptional hexose-fermenting ability of the xylitol-producing yeast Candida guilliermondii FTI 20037.
    Wen X; Sidhu S; Horemans SKC; Sooksawat N; Harner NK; Bajwa PK; Yuan Z; Lee H
    J Biosci Bioeng; 2016 Jun; 121(6):631-637. PubMed ID: 26596373
    [TBL] [Abstract][Full Text] [Related]  

  • 20. METABOLIC STUDIES WITH 2-DEOXYHEXOSES. I. MECHANISMS OF INHIBITION OF GROWTH AND FERMENTATION IN BAKER'S YEAST.
    HEREDIA CF; DELAFUENTE G; SOLS A
    Biochim Biophys Acta; 1964 May; 86():216-23. PubMed ID: 14167419
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 13.