These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
256 related articles for article (PubMed ID: 9813297)
21. The dependence of calcium influx into rat intestine on sugars and alkali metals. Patrick G; Stirling C Arch Int Physiol Biochim; 1973 Sep; 81(3):453-67. PubMed ID: 4127484 [No Abstract] [Full Text] [Related]
22. A continuous fermentation technique for studying the kinetics of sugar uptake by baker's yeast. Trevelyan WE Biochem J; 1966 Aug; 100(2):556-63. PubMed ID: 5968553 [TBL] [Abstract][Full Text] [Related]
23. Studies on the mechanism of the glucose-induced cAMP signal in glycolysis and glucose repression mutants of the yeast Saccharomyces cerevisiae. Beullens M; Mbonyi K; Geerts L; Gladines D; Detremerie K; Jans AW; Thevelein JM Eur J Biochem; 1988 Feb; 172(1):227-31. PubMed ID: 2831059 [TBL] [Abstract][Full Text] [Related]
25. Two distinct proteolytic systems responsible for glucose-induced degradation of fructose-1,6-bisphosphatase and the Gal2p transporter in the yeast Saccharomyces cerevisiae share the same protein components of the glucose signaling pathway. Horak J; Regelmann J; Wolf DH J Biol Chem; 2002 Mar; 277(10):8248-54. PubMed ID: 11773046 [TBL] [Abstract][Full Text] [Related]
26. Isolation of a regulatory mutant of fructose-1,6-diphosphatase in Saccharomyces carlsbergensis. van de Poll KW; Kerkenaar A; Schamhart DH J Bacteriol; 1974 Mar; 117(3):965-70. PubMed ID: 4360542 [TBL] [Abstract][Full Text] [Related]
27. Inhibition of intestinal amino acid transport by hexoses. Saunders SJ; Isselbacher KJ Biochim Biophys Acta; 1965 Jul; 102(2):397-409. PubMed ID: 5852097 [No Abstract] [Full Text] [Related]
28. Specificity of the inhibitory effects of sugars on intestinal amino acid transfer. Bingham JK; Newey H; Smyth DH Biochim Biophys Acta; 1966 Jun; 120(2):314-6. PubMed ID: 5962516 [No Abstract] [Full Text] [Related]
29. Derepression of a baker's yeast strain for maltose utilization is associated with severe deregulation of HXT gene expression. Salema-Oom M; De Sousa HR; Assunção M; Gonçalves P; Spencer-Martins I J Appl Microbiol; 2011 Jan; 110(1):364-74. PubMed ID: 21091593 [TBL] [Abstract][Full Text] [Related]
30. Control of glycolytic dynamics by hexose transport in Saccharomyces cerevisiae. Reijenga KA; Snoep JL; Diderich JA; van Verseveld HW; Westerhoff HV; Teusink B Biophys J; 2001 Feb; 80(2):626-34. PubMed ID: 11159431 [TBL] [Abstract][Full Text] [Related]
31. Catabolite inactivation of the maltose transporter in nitrogen-starved yeast could be due to the stimulation of general protein turnover. Peñalver E; Lucero P; Moreno E; Lagunas R FEMS Microbiol Lett; 1998 Sep; 166(2):317-24. PubMed ID: 9770289 [TBL] [Abstract][Full Text] [Related]
32. On the origin of elementary hexoses. Hirabayashi J Q Rev Biol; 1996 Sep; 71(3):365-80. PubMed ID: 8927690 [TBL] [Abstract][Full Text] [Related]
33. Energy requirement for amino acid uptake in Saccharomyces cerevisiae. Kotyk A; Ríhová L Folia Microbiol (Praha); 1972; 17(5):353-6. PubMed ID: 4562211 [No Abstract] [Full Text] [Related]
34. Inhibition of lactose hydrolysis by dietary sugars. Alpers DH; Cote MN Am J Physiol; 1971 Sep; 221(3):865-8. PubMed ID: 5570344 [No Abstract] [Full Text] [Related]
35. Effects of hexoses and anions on the erythritol permeability of human red cells. Wieth JO J Physiol; 1971 Mar; 213(2):435-53. PubMed ID: 5574848 [TBL] [Abstract][Full Text] [Related]
36. Regulation of maltose transport in Saccharomyces cerevisiae. Brondijk TH; Konings WN; Poolman B Arch Microbiol; 2001 Jul; 176(1-2):96-105. PubMed ID: 11479708 [TBL] [Abstract][Full Text] [Related]
37. Discrepancy in glucose and fructose utilisation during fermentation by Saccharomyces cerevisiae wine yeast strains. Berthels NJ; Cordero Otero RR; Bauer FF; Thevelein JM; Pretorius IS FEMS Yeast Res; 2004 May; 4(7):683-9. PubMed ID: 15093771 [TBL] [Abstract][Full Text] [Related]
38. Non- pleiotropic nature of the gal 3 mutation in yeast. Adams BG; Dalbec JM Biochem Biophys Res Commun; 1977 Feb; 74(4):1348-54. PubMed ID: 191021 [No Abstract] [Full Text] [Related]
39. Sugar best single chorda tympani nerve fiber responses to various sugar stimuli in rat and hamster. Tonosaki K; Beidler LM Comp Biochem Physiol A Comp Physiol; 1989; 94(4):603-5. PubMed ID: 2575946 [TBL] [Abstract][Full Text] [Related]
40. Concurrent knock-out of at least 20 transporter genes is required to block uptake of hexoses in Saccharomyces cerevisiae. Wieczorke R; Krampe S; Weierstall T; Freidel K; Hollenberg CP; Boles E FEBS Lett; 1999 Dec; 464(3):123-8. PubMed ID: 10618490 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]