BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 9813351)

  • 1. Protein stability in the amorphous carbohydrate matrix: relevance to anhydrobiosis.
    Sun WQ; Davidson P; Chan HS
    Biochim Biophys Acta; 1998 Sep; 1425(1):245-54. PubMed ID: 9813351
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein inactivation in amorphous sucrose and trehalose matrices: effects of phase separation and crystallization.
    Sun WQ; Davidson P
    Biochim Biophys Acta; 1998 Sep; 1425(1):235-44. PubMed ID: 9813347
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of sucrose/raffinose mass ratios on the stability of co-lyophilized protein during storage above the Tg.
    Davidson P; Sun WQ
    Pharm Res; 2001 Apr; 18(4):474-9. PubMed ID: 11451034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement of the kinetics of protein unfolding in viscous systems and implications for protein stability in freeze-drying.
    Tang XC; Pikal MJ
    Pharm Res; 2005 Jul; 22(7):1176-85. PubMed ID: 16028019
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of moisture on the stability of a lyophilized humanized monoclonal antibody formulation.
    Breen ED; Curley JG; Overcashier DE; Hsu CC; Shire SJ
    Pharm Res; 2001 Sep; 18(9):1345-53. PubMed ID: 11683251
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of formulation and moisture on the stability of a freeze-dried monoclonal antibody-vinca conjugate: a test of the WLF glass transition theory.
    Roy ML; Pikal MJ; Rickard EC; Maloney AM
    Dev Biol Stand; 1992; 74():323-39; discussion 340. PubMed ID: 1592182
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of dextran molecular weight on protein stabilization during freeze-drying and storage.
    Sun WQ; Davidson P
    Cryo Letters; 2001; 22(5):285-92. PubMed ID: 11788870
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of the physical stability of freeze-dried sucrose-containing formulations by differential scanning calorimetry.
    te Booy MP; de Ruiter RA; de Meere AL
    Pharm Res; 1992 Jan; 9(1):109-14. PubMed ID: 1589394
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of types of sugar on the stabilization of protein in the dried state.
    Imamura K; Ogawa T; Sakiyama T; Nakanishi K
    J Pharm Sci; 2003 Feb; 92(2):266-74. PubMed ID: 12532376
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effective use of differential scanning calorimetry in the optimisation of freeze-drying processes and formulations.
    Hatley RH
    Dev Biol Stand; 1992; 74():105-19; discussion 119-22. PubMed ID: 1592162
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physical factors affecting the storage stability of freeze-dried interleukin-1 receptor antagonist: glass transition and protein conformation.
    Chang BS; Beauvais RM; Dong A; Carpenter JF
    Arch Biochem Biophys; 1996 Jul; 331(2):249-58. PubMed ID: 8660705
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonenzymatic browning kinetics of a carbohydrate-based low-moisture food system at temperatures applicable to spray drying.
    Miao S; Roos YH
    J Agric Food Chem; 2004 Aug; 52(16):5250-7. PubMed ID: 15291504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of water activity, temperature, and physical state on the storage stability of Lactobacillus paracasei ssp. paracasei freeze-dried in a lactose matrix.
    Higl B; Kurtmann L; Carlsen CU; Ratjen J; Först P; Skibsted LH; Kulozik U; Risbo J
    Biotechnol Prog; 2007; 23(4):794-800. PubMed ID: 17636886
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of the relevance of the glassy state as stability criterion for freeze-dried bacteria by application of the Arrhenius and WLF model.
    Aschenbrenner M; Kulozik U; Foerst P
    Cryobiology; 2012 Dec; 65(3):308-18. PubMed ID: 22964396
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physical characterisation of formulations for the development of two stable freeze-dried proteins during both dried and liquid storage.
    Passot S; Fonseca F; Alarcon-Lorca M; Rolland D; Marin M
    Eur J Pharm Biopharm; 2005 Aug; 60(3):335-48. PubMed ID: 15894475
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DSC studies and stability of frozen foods.
    Simatos D; Blond G
    Adv Exp Med Biol; 1991; 302():139-55. PubMed ID: 1746324
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of protein stabilization by sugars during freeze-drying and storage: native structure preservation, specific interaction, and/or immobilization in a glassy matrix?
    Chang L; Shepherd D; Sun J; Ouellette D; Grant KL; Tang XC; Pikal MJ
    J Pharm Sci; 2005 Jul; 94(7):1427-44. PubMed ID: 15920775
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of glass transition temperature of freeze-dried formulations by molecular dynamics simulation.
    Yoshioka S; Aso Y; Kojima S
    Pharm Res; 2003 Jun; 20(6):873-8. PubMed ID: 12817890
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stability of dry liposomes in sugar glasses.
    Sun WQ; Leopold AC; Crowe LM; Crowe JH
    Biophys J; 1996 Apr; 70(4):1769-76. PubMed ID: 8785336
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of lipids on the water sorption, glass transition and structural strength of carbohydrate-protein systems.
    Maidannyk VA; Lim ASL; Auty MAE; Roos YH
    Food Res Int; 2019 Feb; 116():1212-1222. PubMed ID: 30716908
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.