BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 9813887)

  • 1. [A structural analysis of the BRS1 repeat from the genomic DNA of barley (Hordeum vulgare L.)].
    Urbanovich OIu; Kartel' NA
    Tsitol Genet; 1998; 32(4):43-9. PubMed ID: 9813887
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Structural features of the modified BARE-retroelement in the barley (Hordeum vulgare L.) genome].
    Shcherban' AB; Vershinin AV
    Genetika; 1997 Apr; 33(4):431-6. PubMed ID: 9206660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Genome organization and primary structure of the BamHI fragment of highly repetitive DNA from Hordeum vulgare].
    Salina EA; Solov'ev VV; Gulevich VV; Vershinin AV
    Mol Biol (Mosk); 1990; 24(3):729-35. PubMed ID: 2402238
    [TBL] [Abstract][Full Text] [Related]  

  • 4. BARE-ID, a representative of a family of BARE-like elements of the barley genome.
    Shcherban AB; Vershinin AV
    Genetica; 1997; 100(1-3):231-40. PubMed ID: 9440276
    [TBL] [Abstract][Full Text] [Related]  

  • 5. BARE-1 insertion site preferences and evolutionary conservation of RNA and cDNA processing sites.
    Suoniemi A; Schmidt D; Schulman AH
    Genetica; 1997; 100(1-3):219-30. PubMed ID: 9440275
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.).
    Thiel T; Michalek W; Varshney RK; Graner A
    Theor Appl Genet; 2003 Feb; 106(3):411-22. PubMed ID: 12589540
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genomic analysis of cultivated barley (Hordeum vulgare) using sequence-tagged molecular markers. Estimates of divergence based on RFLP and PCR markers derived from stress-responsive genes, and simple-sequence repeats (SSRs).
    Maestri E; Malcevschi A; Massari A; Marmiroli N
    Mol Genet Genomics; 2002 Apr; 267(2):186-201. PubMed ID: 11976962
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genomic sequencing reveals gene content, genomic organization, and recombination relationships in barley.
    Rostoks N; Park YJ; Ramakrishna W; Ma J; Druka A; Shiloff BA; SanMiguel PJ; Jiang Z; Brueggeman R; Sandhu D; Gill K; Bennetzen JL; Kleinhofs A
    Funct Integr Genomics; 2002 May; 2(1-2):51-9. PubMed ID: 12021850
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hop, an active Mutator-like element in the genome of the fungus Fusarium oxysporum.
    Chalvet F; Grimaldi C; Kaper F; Langin T; Daboussi MJ
    Mol Biol Evol; 2003 Aug; 20(8):1362-75. PubMed ID: 12777515
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SIRE1, an endogenous retrovirus family from Glycine max, is highly homogeneous and evolutionarily young.
    Laten HM; Havecker ER; Farmer LM; Voytas DF
    Mol Biol Evol; 2003 Aug; 20(8):1222-30. PubMed ID: 12777503
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation and characterization of repetitive DNA sequences from Panax ginseng.
    Ho IS; Leung FC
    Mol Genet Genomics; 2002 Feb; 266(6):951-61. PubMed ID: 11862489
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Repeated DNA sequences isolated by microdissection. I. Karyotyping of barley (Hordeum vulgare L.).
    Busch W; Martin R; Herrmann RG; Hohmann U
    Genome; 1995 Dec; 38(6):1082-90. PubMed ID: 8654909
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sequence analysis of the leftward end of simian varicella virus (EcoRI-I fragment) reveals the presence of an 8-bp repeat flanking the unique long segment and an 881-bp open-reading frame that is absent in the varicella zoster virus genome.
    Mahalingam R; White T; Wellish M; Gilden DH; Soike K; Gray WL
    Virology; 2000 Sep; 274(2):420-8. PubMed ID: 10964784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tyl6, a novel Ty3/gypsy-like retrotransposon in the genome of the dimorphic fungus Yarrowia lipolytica.
    Kovalchuk A; Senam S; Mauersberger S; Barth G
    Yeast; 2005 Sep; 22(12):979-91. PubMed ID: 16134118
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Superior: a novel repetitive DNA element dispersed in the rye genome.
    Tomita M; Kuramochi M; Iwata S
    Cytogenet Genome Res; 2009; 125(4):306-20. PubMed ID: 19864894
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-wide characterization of long terminal repeat -retrotransposons in apple reveals the differences in heterogeneity and copy number between Ty1-copia and Ty3-gypsy retrotransposons.
    Sun HY; Dai HY; Zhao GL; Ma Y; Ou CQ; Li H; Li LG; Zhang ZH
    J Integr Plant Biol; 2008 Sep; 50(9):1130-9. PubMed ID: 18844781
    [TBL] [Abstract][Full Text] [Related]  

  • 17. BARE retrotransposons produce multiple groups of rarely polyadenylated transcripts from two differentially regulated promoters.
    Chang W; Schulman AH
    Plant J; 2008 Oct; 56(1):40-50. PubMed ID: 18547398
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic analysis of a novel Alaska barley yellow dwarf virus in the family Luteoviridae.
    Robertson NL; French R
    Arch Virol; 2007 Feb; 152(2):369-82. PubMed ID: 17013543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two different clades of copia-like retrotransposons in the red alga, Porphyra yezoensis.
    Peddigari S; Zhang W; Takechi K; Takano H; Takio S
    Gene; 2008 Nov; 424(1-2):153-8. PubMed ID: 18708130
    [TBL] [Abstract][Full Text] [Related]  

  • 20. LINEs and gypsy-like retrotransposons in Hordeum species.
    Vershinin AV; Druka A; Alkhimova AG; Kleinhofs A; Heslop-Harrison JS
    Plant Mol Biol; 2002 May; 49(1):1-14. PubMed ID: 12008894
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.