These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 9813887)

  • 41. Retrotransposon evolution in diverse plant genomes.
    Langdon T; Seago C; Mende M; Leggett M; Thomas H; Forster JW; Jones RN; Jenkins G
    Genetics; 2000 Sep; 156(1):313-25. PubMed ID: 10978295
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Variations in BARE-1 insertion patterns in barley callus cultures.
    Evrensel C; Yilmaz S; Temel A; Gozukirmizi N
    Genet Mol Res; 2011 May; 10(2):980-7. PubMed ID: 21710447
    [TBL] [Abstract][Full Text] [Related]  

  • 43. bilbo, a non-LTR retrotransposon of Drosophila subobscura: a clue to the evolution of LINE-like elements in Drosophila.
    Blesa D; Martínez-Sebastián MJ
    Mol Biol Evol; 1997 Nov; 14(11):1145-53. PubMed ID: 9364772
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Pulsed-field gel analysis of 5S and satellite DNA in barley.
    Röder MS; Sorrells ME; Tanksley SD
    Genome; 1995 Feb; 38(1):153-7. PubMed ID: 7729679
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Two ubiquitin-long-tail fusion genes arranged as closely spaced direct repeats in barley.
    Gausing K; Jensen CB
    Gene; 1990 Oct; 94(2):165-71. PubMed ID: 1701748
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The core domain of retrotransposon integrase in Hordeum: predicted structure and evolution.
    Suoniemi A; Tanskanen J; Pentikäinen O; Johnson MS; Schulman AH
    Mol Biol Evol; 1998 Sep; 15(9):1135-44. PubMed ID: 9729878
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A male-associated DNA sequence in a dioecious plant, Cannabis sativa L.
    Sakamoto K; Shimomura K; Komeda Y; Kamada H; Satoh S
    Plant Cell Physiol; 1995 Dec; 36(8):1549-54. PubMed ID: 8589931
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A contiguous 66-kb barley DNA sequence provides evidence for reversible genome expansion.
    Shirasu K; Schulman AH; Lahaye T; Schulze-Lefert P
    Genome Res; 2000 Jul; 10(7):908-15. PubMed ID: 10899140
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A contiguous 60 kb genomic stretch from barley reveals molecular evidence for gene islands in a monocot genome.
    Panstruga R; Büschges R; Piffanelli P; Schulze-Lefert P
    Nucleic Acids Res; 1998 Feb; 26(4):1056-62. PubMed ID: 9461468
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [A new PCR-primer for specific amplification of human DNA fragments selected on the basis of computer analysis of the nucleotide sequences of MER1 dispersed repeats in man].
    Iantsen EI; Ptitsyn AA; Filipenko ML; Batyrina OA; Muravlev AI; Mertvetsov NP
    Genetika; 1997 Feb; 33(2):243-8. PubMed ID: 9162701
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Interspecies variability in the organization of repeated sequences of the genus Hordeum].
    Salina EA; Timofeeva LL; Vershinin AV
    Genetika; 1989 Apr; 25(4):595-604. PubMed ID: 2759442
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Intimate association of microsatellite repeats with retrotransposons and other dispersed repetitive elements in barley.
    Ramsay L; Macaulay M; Cardle L; Morgante M; degli Ivanissevich S; Maestri E; Powell W; Waugh R
    Plant J; 1999 Feb; 17(4):415-25. PubMed ID: 10205898
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A hAT superfamily transposase recruited by the cereal grass genome.
    Muehlbauer GJ; Bhau BS; Syed NH; Heinen S; Cho S; Marshall D; Pateyron S; Buisine N; Chalhoub B; Flavell AJ
    Mol Genet Genomics; 2006 Jun; 275(6):553-63. PubMed ID: 16468023
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Large retrotransposon derivatives: abundant, conserved but nonautonomous retroelements of barley and related genomes.
    Kalendar R; Vicient CM; Peleg O; Anamthawat-Jonsson K; Bolshoy A; Schulman AH
    Genetics; 2004 Mar; 166(3):1437-50. PubMed ID: 15082561
    [TBL] [Abstract][Full Text] [Related]  

  • 55. SIRE1 RETROTRANSPOSONS IN BARLEY (Hordeum vulgare L.).
    Cakmak B; Marakli S; Gozukirmizi N
    Genetika; 2015 Jul; 51(7):775-86. PubMed ID: 26410931
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Gene Deletion in Barley Mediated by LTR-retrotransposon BARE.
    Shang Y; Yang F; Schulman AH; Zhu J; Jia Y; Wang J; Zhang XQ; Jia Q; Hua W; Yang J; Li C
    Sci Rep; 2017 Mar; 7():43766. PubMed ID: 28252053
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Chicken repeat 1 (CR1) elements, which define an ancient family of vertebrate non-LTR retrotransposons, contain two closely spaced open reading frames.
    Haas NB; Grabowski JM; Sivitz AB; Burch JB
    Gene; 1997 Sep; 197(1-2):305-9. PubMed ID: 9332379
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Multiple non-LTR retrotransposons in the genome of Arabidopsis thaliana.
    Wright DA; Ke N; Smalle J; Hauge BM; Goodman HM; Voytas DF
    Genetics; 1996 Feb; 142(2):569-78. PubMed ID: 8852854
    [TBL] [Abstract][Full Text] [Related]  

  • 59. ATLN elements, LINEs from Arabidopsis thaliana: identification and characterization.
    Noma K; Ohtsubo H; Ohtsubo E
    DNA Res; 2000 Oct; 7(5):291-303. PubMed ID: 11089911
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Characterization of repetitive DNA elements in Arabidopsis.
    Surzycki SA; Belknap WR
    J Mol Evol; 1999 Jun; 48(6):684-91. PubMed ID: 10229572
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.