These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 9813887)
41. Retrotransposon evolution in diverse plant genomes. Langdon T; Seago C; Mende M; Leggett M; Thomas H; Forster JW; Jones RN; Jenkins G Genetics; 2000 Sep; 156(1):313-25. PubMed ID: 10978295 [TBL] [Abstract][Full Text] [Related]
42. Variations in BARE-1 insertion patterns in barley callus cultures. Evrensel C; Yilmaz S; Temel A; Gozukirmizi N Genet Mol Res; 2011 May; 10(2):980-7. PubMed ID: 21710447 [TBL] [Abstract][Full Text] [Related]
43. bilbo, a non-LTR retrotransposon of Drosophila subobscura: a clue to the evolution of LINE-like elements in Drosophila. Blesa D; Martínez-Sebastián MJ Mol Biol Evol; 1997 Nov; 14(11):1145-53. PubMed ID: 9364772 [TBL] [Abstract][Full Text] [Related]
44. Pulsed-field gel analysis of 5S and satellite DNA in barley. Röder MS; Sorrells ME; Tanksley SD Genome; 1995 Feb; 38(1):153-7. PubMed ID: 7729679 [TBL] [Abstract][Full Text] [Related]
45. Two ubiquitin-long-tail fusion genes arranged as closely spaced direct repeats in barley. Gausing K; Jensen CB Gene; 1990 Oct; 94(2):165-71. PubMed ID: 1701748 [TBL] [Abstract][Full Text] [Related]
46. The core domain of retrotransposon integrase in Hordeum: predicted structure and evolution. Suoniemi A; Tanskanen J; Pentikäinen O; Johnson MS; Schulman AH Mol Biol Evol; 1998 Sep; 15(9):1135-44. PubMed ID: 9729878 [TBL] [Abstract][Full Text] [Related]
47. A male-associated DNA sequence in a dioecious plant, Cannabis sativa L. Sakamoto K; Shimomura K; Komeda Y; Kamada H; Satoh S Plant Cell Physiol; 1995 Dec; 36(8):1549-54. PubMed ID: 8589931 [TBL] [Abstract][Full Text] [Related]
48. A contiguous 66-kb barley DNA sequence provides evidence for reversible genome expansion. Shirasu K; Schulman AH; Lahaye T; Schulze-Lefert P Genome Res; 2000 Jul; 10(7):908-15. PubMed ID: 10899140 [TBL] [Abstract][Full Text] [Related]
49. A contiguous 60 kb genomic stretch from barley reveals molecular evidence for gene islands in a monocot genome. Panstruga R; Büschges R; Piffanelli P; Schulze-Lefert P Nucleic Acids Res; 1998 Feb; 26(4):1056-62. PubMed ID: 9461468 [TBL] [Abstract][Full Text] [Related]
50. [A new PCR-primer for specific amplification of human DNA fragments selected on the basis of computer analysis of the nucleotide sequences of MER1 dispersed repeats in man]. Iantsen EI; Ptitsyn AA; Filipenko ML; Batyrina OA; Muravlev AI; Mertvetsov NP Genetika; 1997 Feb; 33(2):243-8. PubMed ID: 9162701 [TBL] [Abstract][Full Text] [Related]
51. [Interspecies variability in the organization of repeated sequences of the genus Hordeum]. Salina EA; Timofeeva LL; Vershinin AV Genetika; 1989 Apr; 25(4):595-604. PubMed ID: 2759442 [TBL] [Abstract][Full Text] [Related]
52. Intimate association of microsatellite repeats with retrotransposons and other dispersed repetitive elements in barley. Ramsay L; Macaulay M; Cardle L; Morgante M; degli Ivanissevich S; Maestri E; Powell W; Waugh R Plant J; 1999 Feb; 17(4):415-25. PubMed ID: 10205898 [TBL] [Abstract][Full Text] [Related]
53. A hAT superfamily transposase recruited by the cereal grass genome. Muehlbauer GJ; Bhau BS; Syed NH; Heinen S; Cho S; Marshall D; Pateyron S; Buisine N; Chalhoub B; Flavell AJ Mol Genet Genomics; 2006 Jun; 275(6):553-63. PubMed ID: 16468023 [TBL] [Abstract][Full Text] [Related]
54. Large retrotransposon derivatives: abundant, conserved but nonautonomous retroelements of barley and related genomes. Kalendar R; Vicient CM; Peleg O; Anamthawat-Jonsson K; Bolshoy A; Schulman AH Genetics; 2004 Mar; 166(3):1437-50. PubMed ID: 15082561 [TBL] [Abstract][Full Text] [Related]