These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 9814538)

  • 21. The acoustic fields of the Wolf electrohydraulic lithotripter.
    Campbell DS; Flynn HG; Blackstock DT; Linke C; Carstensen EL
    J Lithotr Stone Dis; 1991 Apr; 3(2):147-56. PubMed ID: 10149155
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparison of electrohydraulic lithotripters with rigid and pressure-release ellipsoidal reflectors. II. Cavitation fields.
    Bailey MR; Blackstock DT; Cleveland RO; Crum LA
    J Acoust Soc Am; 1999 Aug; 106(2):1149-60. PubMed ID: 10462818
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In vivo detection of ultrasonically induced cavitation by a fibre-optic technique.
    Huber P; Debus J; Peschke P; Hahn EW; Lorenz WJ
    Ultrasound Med Biol; 1994; 20(8):811-25. PubMed ID: 7863570
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Turbulent water coupling in shock wave lithotripsy.
    Lautz J; Sankin G; Zhong P
    Phys Med Biol; 2013 Feb; 58(3):735-48. PubMed ID: 23322027
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of the shock pulse-induced cavitation bubble activities recorded by an optical fiber hydrophone.
    Kang G; Cho SC; Coleman AJ; Choi MJ
    J Acoust Soc Am; 2014 Mar; 135(3):1139-48. PubMed ID: 24606257
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spatial-temporal dynamics of cavitation bubble clouds in 1.2 MHz focused ultrasound field.
    Chen H; Li X; Wan M
    Ultrason Sonochem; 2006 Sep; 13(6):480-6. PubMed ID: 16571378
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of ultrasound pulse parameters on cavitation properties of flowing microbubbles under physiologically relevant conditions.
    Cheng M; Li F; Han T; Yu ACH; Qin P
    Ultrason Sonochem; 2019 Apr; 52():512-521. PubMed ID: 30642801
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Understanding cavitation-related mechanism of therapeutic ultrasound in the field of urology: Part I of therapeutic ultrasound in urology.
    Cho SY; Kwon O; Kim SC; Song H; Kim K; Choi MJ
    Investig Clin Urol; 2022 Jul; 63(4):385-393. PubMed ID: 35670003
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A theoretical study of cavitation generated by an extracorporeal shock wave lithotripter.
    Church CC
    J Acoust Soc Am; 1989 Jul; 86(1):215-27. PubMed ID: 2754108
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Controlled, forced collapse of cavitation bubbles for improved stone fragmentation during shock wave lithotripsy.
    Zhong P; Cocks FH; Cioanta I; Preminger GM
    J Urol; 1997 Dec; 158(6):2323-8. PubMed ID: 9366384
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cavitation bubble cluster activity in the breakage of kidney stones by lithotripter shockwaves.
    Pishchalnikov YA; Sapozhnikov OA; Bailey MR; Williams JC; Cleveland RO; Colonius T; Crum LA; Evan AP; McAteer JA
    J Endourol; 2003 Sep; 17(7):435-46. PubMed ID: 14565872
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of cavitational activity in lithotripsy fields using a robust electromagnetic probe.
    Pye SD; Dineley JA
    Ultrasound Med Biol; 1999 Mar; 25(3):451-71. PubMed ID: 10374988
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluation of a shock wave induced cavitation activity both in vitro and in vivo.
    Tu J; Matula TJ; Bailey MR; Crum LA
    Phys Med Biol; 2007 Oct; 52(19):5933-44. PubMed ID: 17881810
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The generation of negative pressure waves for cavitation studies.
    Carnell MT; Gentry TP; Emmony DC
    Ultrasonics; 1998 Feb; 36(1-5):689-93. PubMed ID: 9651598
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Controlled permeation of cell membrane by single bubble acoustic cavitation.
    Zhou Y; Yang K; Cui J; Ye JY; Deng CX
    J Control Release; 2012 Jan; 157(1):103-11. PubMed ID: 21945682
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Collapse and rebound of a gas-filled spherical bubble immersed in a diagnostic ultrasonic field.
    Aymé-Bellegarda EJ
    J Acoust Soc Am; 1990 Aug; 88(2):1054-60. PubMed ID: 2212284
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Shock wave interaction with laser-generated single bubbles.
    Sankin GN; Simmons WN; Zhu SL; Zhong P
    Phys Rev Lett; 2005 Jul; 95(3):034501. PubMed ID: 16090745
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transient cavitation and acoustic emission produced by different laser lithotripters.
    Zhong P; Tong HL; Cocks FH; Pearle MS; Preminger GM
    J Endourol; 1998 Aug; 12(4):371-8. PubMed ID: 9726407
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of static pressure on acoustic energy radiated by cavitation bubbles in viscous liquids under ultrasound.
    Yasui K; Towata A; Tuziuti T; Kozuka T; Kato K
    J Acoust Soc Am; 2011 Nov; 130(5):3233-42. PubMed ID: 22087995
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transient oscillation of cavitation bubbles near stone surface during electrohydraulic lithotripsy.
    Zhong P; Tong HL; Cocks FH; Preminger GM
    J Endourol; 1997 Feb; 11(1):55-61. PubMed ID: 9048300
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.