These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 9814851)
1. Characterization of membrane-bound serine protease related to degradation of oxidatively damaged erythrocyte membrane proteins. Fujino T; Ishikawa T; Inoue M; Beppu M; Kikugawa K Biochim Biophys Acta; 1998 Sep; 1374(1-2):47-55. PubMed ID: 9814851 [TBL] [Abstract][Full Text] [Related]
2. Purification and characterization of a serine protease in erythrocyte cytosol that is adherent to oxidized membranes and preferentially degrades proteins modified by oxidation and glycation. Fujino T; Tada T; Beppu M; Kikugawa K J Biochem; 1998 Dec; 124(6):1077-85. PubMed ID: 9832611 [TBL] [Abstract][Full Text] [Related]
3. Enzymatic removal of oxidized protein aggregates from erythrocyte membranes. Fujino T; Ando K; Beppu M; Kikugawa K J Biochem; 2000 Jun; 127(6):1081-6. PubMed ID: 10833278 [TBL] [Abstract][Full Text] [Related]
4. Presence of membrane-bound proteinases that preferentially degrade oxidatively damaged erythrocyte membrane proteins as secondary antioxidant defense. Beppu M; Inoue M; Ishikawa T; Kikugawa K Biochim Biophys Acta; 1994 Nov; 1196(1):81-7. PubMed ID: 7986814 [TBL] [Abstract][Full Text] [Related]
5. Identification of oxidized protein hydrolase of human erythrocytes as acylpeptide hydrolase. Fujino T; Watanabe K; Beppu M; Kikugawa K; Yasuda H Biochim Biophys Acta; 2000 Mar; 1478(1):102-12. PubMed ID: 10719179 [TBL] [Abstract][Full Text] [Related]
6. Monomeric 55-kDa guanidinobenzoatase switches to a serine proteinase activity upon tetramerization. Tetrameric proteinase SP 220 K appears as the native form. Poustis-Delpont C; Thaon S; Auberger P; Gerardi-Laffin C; Sudaka P; Rossi B J Biol Chem; 1994 May; 269(20):14666-71. PubMed ID: 8182074 [TBL] [Abstract][Full Text] [Related]
7. Presence of oxidized protein hydrolase in human cell lines, rat tissues, and human/rat plasma. Fujino T; Tada T; Hosaka T; Beppu M; Kikugawa K J Biochem; 2000 Feb; 127(2):307-13. PubMed ID: 10731698 [TBL] [Abstract][Full Text] [Related]
8. Xanthine oxidase-catalyzed crosslinking of cell membrane proteins. Girotti AW; Thomas JP; Jordan JE Arch Biochem Biophys; 1986 Dec; 251(2):639-53. PubMed ID: 3800391 [TBL] [Abstract][Full Text] [Related]
9. Proteolytic self-digestion of bovine erythrocyte membranes. Gaczyńska M; Bartosz G; Rosin J; Soszyński M Int J Biochem; 1985; 17(11):1237-45. PubMed ID: 3908185 [TBL] [Abstract][Full Text] [Related]
10. Identification and purification of a 90-kDa membrane-bound endogenous inhibitor of multicatalytic proteinase from human erythrocytes. Khan MT; Wang K; Roufogalis BD Biochem Biophys Res Commun; 1995 Sep; 214(3):957-62. PubMed ID: 7575569 [TBL] [Abstract][Full Text] [Related]
11. Occurrence of lipid receptors inferred from brain and erythrocyte spectrins binding NaOH-extracted and protease-treated neuronal and erythrocyte membranes. Diakowski W; Szopa J; Sikorski AF Biochim Biophys Acta; 2003 Apr; 1611(1-2):115-22. PubMed ID: 12659952 [TBL] [Abstract][Full Text] [Related]
12. Binding of anti-band 3 autoantibody to oxidatively damaged erythrocytes. Formation of senescent antigen on erythrocyte surface by an oxidative mechanism. Beppu M; Mizukami A; Nagoya M; Kikugawa K J Biol Chem; 1990 Feb; 265(6):3226-33. PubMed ID: 2303447 [TBL] [Abstract][Full Text] [Related]
13. Isolation and characterization of protease do from Escherichia coli, a large serine protease containing multiple subunits. Swamy KH; Chung CH; Goldberg AL Arch Biochem Biophys; 1983 Jul; 224(2):543-54. PubMed ID: 6347072 [TBL] [Abstract][Full Text] [Related]
14. Identification of P-57, a serine proteinase, from human erythrocyte membranes, which cleaves both chains of human third component (C3) of complement. Charriaut-Marlangue C; Barel M; Frade R Biochem Biophys Res Commun; 1986 Nov; 140(3):1113-20. PubMed ID: 3535796 [TBL] [Abstract][Full Text] [Related]
15. Human NADH-cytochrome b5 reductases: comparison among those of erythrocyte membrane, erythrocyte cytosol, and liver microsomes. Kitajima S; Minakami S J Biochem; 1983 Feb; 93(2):615-20. PubMed ID: 6841358 [TBL] [Abstract][Full Text] [Related]
16. Oxidation of spectrin and deformability defects in diabetic erythrocytes. Schwartz RS; Madsen JW; Rybicki AC; Nagel RL Diabetes; 1991 Jun; 40(6):701-8. PubMed ID: 2040386 [TBL] [Abstract][Full Text] [Related]
17. Isolation of a protein labeled with diisopropyl fluorophosphate on stimulation of polymorphonuclear leukocytes with immune complexes. Kudoh M; Nakamura T; Koyama J Mol Immunol; 1985 Sep; 22(9):1099-105. PubMed ID: 2999580 [TBL] [Abstract][Full Text] [Related]
18. Calcium effects on human erythrocyte membrane proteins. King LE; Morrison M Biochim Biophys Acta; 1977 Nov; 471(1):162-8. PubMed ID: 921972 [TBL] [Abstract][Full Text] [Related]
19. Membrane-bound high molecular mass proteinases from human erythrocytes. Khan MT; Wang K; Auland ME; Kable EP; Roufogalis BD Biochim Biophys Acta; 1994 Dec; 1209(2):215-21. PubMed ID: 7811693 [TBL] [Abstract][Full Text] [Related]
20. Neutral serine proteinase and metalloproteinase strongly bound to human erythrocyte membrane. Gaczyńska M; Bartosz G Cytobios; 1993; 74(296):29-33. PubMed ID: 8330486 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]