These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 9815041)

  • 41. Release of Ca2+ and Mg2+ from yeast mitochondria is stimulated by increased ionic strength.
    Bradshaw PC; Pfeiffer DR
    BMC Biochem; 2006 Feb; 7():4. PubMed ID: 16460565
    [TBL] [Abstract][Full Text] [Related]  

  • 42. alpha(1)-Adrenoceptor-induced Mg2+ extrusion from rat hepatocytes occurs via Na(+)-dependent transport mechanism.
    Fagan TE; Romani A
    Am J Physiol Gastrointest Liver Physiol; 2001 Jun; 280(6):G1145-56. PubMed ID: 11352807
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Extracellular Mg(2+)-dependent Na+, K+, and Cl- efflux in squid giant axons.
    Rasgado-Flores H; Gonzalez-Serratos H; DeSantiago J
    Am J Physiol; 1994 Apr; 266(4 Pt 1):C1112-7. PubMed ID: 8178958
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Reoxygenation injury in isolated hepatocytes: effect of extracellular ATP on cation homeostasis.
    Hayashi H; Chaudry IH; Clemens MG; Hull MJ; Baue AE
    Am J Physiol; 1986 Apr; 250(4 Pt 2):R573-9. PubMed ID: 3963227
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Evidence for simultaneous 1Na+:1Mg2+ and ping pong 2Na+:1Mg2+ exchangers in rat thymocyte.
    Contreras-Jurado C; Sanchez-Morito N; Ruiz-Contreras A; Gonzalez-Martinez MT; Soler-Diaz A
    Front Biosci; 2005 May; 10():1693-706. PubMed ID: 15769659
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Mg2+-malate co-transport, a mechanism for Na+-independent Mg2+ transport in neurons of the leech Hirudo medicinalis.
    Günzel D; Hintz K; Durry S; Schlue WR
    J Neurophysiol; 2005 Jul; 94(1):441-53. PubMed ID: 15788520
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effect of ethanol on energy status and intracellular calcium of Sertoli cells: a study using immobilized perfused cells.
    Farghali H; Williams DS; Caraceni P; Borle AB; Gasbarrini A; Gavaler J; Rilo HL; Ho C; Van Thiel DH
    Endocrinology; 1993 Dec; 133(6):2749-55. PubMed ID: 8243299
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Apparent intracellular Mg2+ buffering in neurons of the leech Hirudo medicinalis.
    Günzel D; Zimmermann F; Durry S; Schlue WR
    Biophys J; 2001 Mar; 80(3):1298-310. PubMed ID: 11222292
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Na+/Mg2+ antiport in non-erythrocyte vertebrate cells.
    Günther T
    Magnes Res; 2007 Jun; 20(2):89-99. PubMed ID: 18062583
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Na+/Mg2+ transporter acts as a Mg2+ buffering mechanism in PC12 cells.
    Kubota T; Tokuno K; Nakagawa J; Kitamura Y; Ogawa H; Suzuki Y; Suzuki K; Oka K
    Biochem Biophys Res Commun; 2003 Mar; 303(1):332-6. PubMed ID: 12646207
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Regulation of Na+/Mg2+ antiport in rat erythrocytes.
    Ebel H; Kreis R; Günther T
    Biochim Biophys Acta; 2004 Aug; 1664(2):150-60. PubMed ID: 15328047
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Plasmalemmal transport of magnesium in excitable cells.
    Rasgado-Flores H; Gonzalez-Serratos H
    Front Biosci; 2000 Sep; 5():D866-79. PubMed ID: 10966876
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Abnormal regulation of Mg2+ transport via Na/Mg exchanger in sickle erythrocytes.
    Rivera A; Ferreira A; Bertoni D; Romero JR; Brugnara C
    Blood; 2005 Jan; 105(1):382-6. PubMed ID: 15353477
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mg2+ release coupled to Ca2+ uptake: a novel Ca 2+ accumulation mechanism in rat liver.
    Cefaratti C
    Mol Cell Biochem; 2007 Jan; 295(1-2):241-7. PubMed ID: 16845488
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Potentiation of adriamycin toxicity by ethanol in perfused rat liver.
    Liu Y; Thurman RG
    J Pharmacol Exp Ther; 1992 Nov; 263(2):651-6. PubMed ID: 1432695
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Screening of a low alcohol dehydrogenase activity mutant of rhizopus oryzae and the regulation of Zn2+ and Mg2+].
    Pan LJ; Fu P; Zheng Z; Luo SZ; Jiang ST
    Wei Sheng Wu Xue Bao; 2006 Aug; 46(4):586-90. PubMed ID: 17037060
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Stimulation of choline/Mg2+ antiport in rat erythrocytes by mefloquine.
    Ebel H; Günther T
    Magnes Res; 2006 Mar; 19(1):7-11. PubMed ID: 16846095
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Influence of Mg2+ on cardiac performance, intracellular free Mg2+ and pH in perfused hearts as assessed with 31P nuclear magnetic resonance spectroscopy.
    Barbour RL; Altura BM; Reiner SD; Dowd TL; Gupta RK; Wu F; Altura BT
    Magnes Trace Elem; 1991-1992; 10(2-4):99-116. PubMed ID: 1844566
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Evidence against norepinephrine-stimulated efflux of mitochondrial Mg2+ from intact cardiac myocytes.
    Altschuld RA; Jung DW; Phillips RM; Narayan P; Castillo LC; Whitaker TE; Hensley J; Hohl CM; Brierley GP
    Am J Physiol; 1994 Mar; 266(3 Pt 2):H1103-11. PubMed ID: 8160813
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Ionic modulation of triethyllead neurotoxicity in cerebellar granule cell culture.
    Verity MA; Sarafian TS; Guerra W; Ettinger A; Sharp J
    Neurotoxicology; 1990; 11(3):415-26. PubMed ID: 2284048
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.