These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 9815067)

  • 1. Potassium channels mediate dilatation of cerebral arterioles in response to arachidonate.
    Sobey CG; Heistad DD; Faraci FM
    Am J Physiol; 1998 Nov; 275(5):H1606-12. PubMed ID: 9815067
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms of bradykinin-induced cerebral vasodilatation in rats. Evidence that reactive oxygen species activate K+ channels.
    Sobey CG; Heistad DD; Faraci FM
    Stroke; 1997 Nov; 28(11):2290-4; discussion 2295. PubMed ID: 9368578
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arachidonate dilates basilar artery by lipoxygenase-dependent mechanism and activation of K(+) channels.
    Faraci FM; Sobey CG; Chrissobolis S; Lund DD; Heistad DD; Weintraub NL
    Am J Physiol Regul Integr Comp Physiol; 2001 Jul; 281(1):R246-53. PubMed ID: 11404300
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of Ca(2+)-dependent K+ channels in cerebral vasodilatation induced by increases in cyclic GMP and cyclic AMP in the rat.
    PaternĂ² R; Faraci FM; Heistad DD
    Stroke; 1996 Sep; 27(9):1603-7; discussion 1607-8. PubMed ID: 8784136
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of soluble guanylate cyclase in dilator responses of the cerebral microcirculation.
    Faraci FM; Sobey CG
    Brain Res; 1999 Mar; 821(2):368-73. PubMed ID: 10064823
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of nitric oxide and potassium channel agonists and inhibitors on basilar artery diameter.
    Sobey CG; Faraci FM
    Am J Physiol; 1997 Jan; 272(1 Pt 2):H256-62. PubMed ID: 9038945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ATP-sensitive potassium channels mediate dilatation of basilar artery in response to intracellular acidification in vivo.
    Santa N; Kitazono T; Ago T; Ooboshi H; Kamouchi M; Wakisaka M; Ibayashi S; Iida M
    Stroke; 2003 May; 34(5):1276-80. PubMed ID: 12677015
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dilatation of cerebral arterioles in response to activation of adenylate cyclase is dependent on activation of Ca(2+)-dependent K+ channels.
    Taguchi H; Heistad DD; Kitazono T; Faraci FM
    Circ Res; 1995 Jun; 76(6):1057-62. PubMed ID: 7758160
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Responses of cerebral arterioles to N-methyl-D-aspartate and activation of ATP-sensitive potassium channels in old rats.
    Faraci FM; Heistad DD
    Brain Res; 1994 Aug; 654(2):349-51. PubMed ID: 7987685
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of Ca(2+)-activated K+ channels in acetylcholine-induced dilatation of the basilar artery in vivo.
    Kitazono T; Ibayashi S; Nagao T; Fujii K; Fujishima M
    Br J Pharmacol; 1997 Jan; 120(1):102-6. PubMed ID: 9117083
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Responses of cerebral arterioles in diabetic rats to activation of ATP-sensitive potassium channels.
    Mayhan WG; Faraci FM
    Am J Physiol; 1993 Jul; 265(1 Pt 2):H152-7. PubMed ID: 8342628
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms of cerebral vasodilation by superoxide, hydrogen peroxide, and peroxynitrite.
    Wei EP; Kontos HA; Beckman JS
    Am J Physiol; 1996 Sep; 271(3 Pt 2):H1262-6. PubMed ID: 8853367
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms of adrenomedullin-induced dilatation of cerebral arterioles.
    Lang MG; PaternĂ² R; Faraci FM; Heistad DD
    Stroke; 1997 Jan; 28(1):181-5. PubMed ID: 8996509
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition by arachidonate of cerebral arteriolar dilation from acetylcholine.
    Kontos HA; Wei EP; Povlishock JT; Kukreja RC; Hess ML
    Am J Physiol; 1989 Mar; 256(3 Pt 2):H665-71. PubMed ID: 2538081
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Endothelial ATP-sensitive potassium channels mediate coronary microvascular dilation to hyperosmolarity.
    Ishizaka H; Kuo L
    Am J Physiol; 1997 Jul; 273(1 Pt 2):H104-12. PubMed ID: 9249480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Superoxide levels and function of cerebral blood vessels after inhibition of CuZn-SOD.
    Didion SP; Hathaway CA; Faraci FM
    Am J Physiol Heart Circ Physiol; 2001 Oct; 281(4):H1697-703. PubMed ID: 11557560
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of K ATP channels in cephalic vasodilatation induced by calcitonin gene-related peptide, nitric oxide, and transcranial electrical stimulation in the rat.
    Gozalov A; Jansen-Olesen I; Klaerke D; Olesen J
    Headache; 2008 Sep; 48(8):1202-13. PubMed ID: 18647185
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduction in cerebral arteriolar oxygen consumption by arachidonate.
    Levasseur JE; Kontos HA; Ellis EF
    Am J Physiol; 1985 Apr; 248(4 Pt 2):H534-9. PubMed ID: 3920921
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of ATP-sensitive potassium channels in the basilar artery.
    Faraci FM; Heistad DD
    Am J Physiol; 1993 Jan; 264(1 Pt 2):H8-13. PubMed ID: 8430866
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo properties of potassium channels in cerebral blood vessels during diabetes mellitus.
    Mayhan WG; Mayhan JF; Sun H; Patel KP
    Microcirculation; 2004; 11(7):605-13. PubMed ID: 15513870
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.