These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 9815080)

  • 1. Deformation-induced ATP release from red blood cells requires CFTR activity.
    Sprague RS; Ellsworth ML; Stephenson AH; Kleinhenz ME; Lonigro AJ
    Am J Physiol; 1998 Nov; 275(5):H1726-32. PubMed ID: 9815080
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Participation of cAMP in a signal-transduction pathway relating erythrocyte deformation to ATP release.
    Sprague RS; Ellsworth ML; Stephenson AH; Lonigro AJ
    Am J Physiol Cell Physiol; 2001 Oct; 281(4):C1158-64. PubMed ID: 11546651
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impaired release of ATP from red blood cells of humans with primary pulmonary hypertension.
    Sprague RS; Stephenson AH; Ellsworth ML; Keller C; Lonigro AJ
    Exp Biol Med (Maywood); 2001 May; 226(5):434-9. PubMed ID: 11393171
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Erythrocytes of humans with cystic fibrosis fail to stimulate nitric oxide synthesis in isolated rabbit lungs.
    Liang G; Stephenson AH; Lonigro AJ; Sprague RS
    Am J Physiol Heart Circ Physiol; 2005 Apr; 288(4):H1580-5. PubMed ID: 15591098
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ATP: the red blood cell link to NO and local control of the pulmonary circulation.
    Sprague RS; Ellsworth ML; Stephenson AH; Lonigro AJ
    Am J Physiol; 1996 Dec; 271(6 Pt 2):H2717-22. PubMed ID: 8997335
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature-dependent release of ATP from human erythrocytes: mechanism for the control of local tissue perfusion.
    Kalsi KK; González-Alonso J
    Exp Physiol; 2012 Mar; 97(3):419-32. PubMed ID: 22227202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Receptor-mediated activation of the heterotrimeric G-protein Gs results in ATP release from erythrocytes.
    Olearczyk JJ; Stephenson AH; Lonigro AJ; Sprague RS
    Med Sci Monit; 2001; 7(4):669-74. PubMed ID: 11433193
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cystic fibrosis transmembrane conductance regulator facilitates ATP release by stimulating a separate ATP release channel for autocrine control of cell volume regulation.
    Braunstein GM; Roman RM; Clancy JP; Kudlow BA; Taylor AL; Shylonsky VG; Jovov B; Peter K; Jilling T; Ismailov II; Benos DJ; Schwiebert LM; Fitz JG; Schwiebert EM
    J Biol Chem; 2001 Mar; 276(9):6621-30. PubMed ID: 11110786
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stimulation of rat erythrocyte P2X7 receptor induces the release of epoxyeicosatrienoic acids.
    Jiang H; Zhu AG; Mamczur M; Falck JR; Lerea KM; McGiff JC
    Br J Pharmacol; 2007 Aug; 151(7):1033-40. PubMed ID: 17558440
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellular ATP release by the cystic fibrosis transmembrane conductance regulator.
    Prat AG; Reisin IL; Ausiello DA; Cantiello HF
    Am J Physiol; 1996 Feb; 270(2 Pt 1):C538-45. PubMed ID: 8779917
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CFTR-independent ATP release from epithelial cells triggered by mechanical stimuli.
    Grygorczyk R; Hanrahan JW
    Am J Physiol; 1997 Mar; 272(3 Pt 1):C1058-66. PubMed ID: 9124508
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Red blood cell stimulation of platelet nitric oxide production indicated by quantitative monitoring of the communication between cells in the bloodstream.
    Carroll JS; Ku CJ; Karunarathne W; Spence DM
    Anal Chem; 2007 Jul; 79(14):5133-8. PubMed ID: 17580956
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of microchip-based hydrodynamic focusing to measure the deformation-induced release of ATP from erythrocytes.
    Moehlenbrock MJ; Price AK; Martin RS
    Analyst; 2006 Aug; 131(8):930-7. PubMed ID: 17028727
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cystic fibrosis transmembrane conductance regulator-dependent bicarbonate entry controls rat cardiomyocyte ATP release via pannexin1 through mitochondrial signalling and caspase activation.
    Wang Y; Zhao J; Cai Y; Ballard HJ
    Acta Physiol (Oxf); 2020 Sep; 230(1):e13495. PubMed ID: 32386453
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitric oxide inhibits ATP release from erythrocytes.
    Olearczyk JJ; Ellsworth ML; Stephenson AH; Lonigro AJ; Sprague RS
    J Pharmacol Exp Ther; 2004 Jun; 309(3):1079-84. PubMed ID: 14766946
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Altering intracellular pH reveals the kinetic basis of intraburst gating in the CFTR Cl
    Chen JH; Xu W; Sheppard DN
    J Physiol; 2017 Feb; 595(4):1059-1076. PubMed ID: 27779763
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of the F508del mutation on ovine CFTR, a Cl- channel with enhanced conductance and ATP-dependent gating.
    Cai Z; Palmai-Pallag T; Khuituan P; Mutolo MJ; Boinot C; Liu B; Scott-Ward TS; Callebaut I; Harris A; Sheppard DN
    J Physiol; 2015 Jun; 593(11):2427-46. PubMed ID: 25763566
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Involvement of the cystic fibrosis transmembrane conductance regulator in the acidosis-induced efflux of ATP from rat skeletal muscle.
    Tu J; Le G; Ballard HJ
    J Physiol; 2010 Nov; 588(Pt 22):4563-78. PubMed ID: 20819945
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of the adenosinetriphosphatase and transport activities of purified cystic fibrosis transmembrane conductance regulator.
    Ketchum CJ; Rajendrakumar GV; Maloney PC
    Biochemistry; 2004 Feb; 43(4):1045-53. PubMed ID: 14744150
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Erythrocyte membrane ATP binding cassette (ABC) proteins: MRP1 and CFTR as well as CD39 (ecto-apyrase) involved in RBC ATP transport and elevated blood plasma ATP of cystic fibrosis.
    Abraham EH; Sterling KM; Kim RJ; Salikhova AY; Huffman HB; Crockett MA; Johnston N; Parker HW; Boyle WE; Hartov A; Demidenko E; Efird J; Kahn J; Grubman SA; Jefferson DM; Robson SC; Thakar JH; Lorico A; Rappa G; Sartorelli AC; Okunieff P
    Blood Cells Mol Dis; 2001; 27(1):165-80. PubMed ID: 11358378
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.