These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 9815909)
1. Diffusible cytotoxic metabolites contribute to the in vitro bystander effect associated with the cyclophosphamide/cytochrome P450 2B1 cancer gene therapy paradigm. Wei MX; Tamiya T; Rhee RJ; Breakefield XO; Chiocca EA Clin Cancer Res; 1995 Oct; 1(10):1171-7. PubMed ID: 9815909 [TBL] [Abstract][Full Text] [Related]
2. Potentiation of cytochrome P450/cyclophosphamide-based cancer gene therapy by coexpression of the P450 reductase gene. Chen L; Yu LJ; Waxman DJ Cancer Res; 1997 Nov; 57(21):4830-7. PubMed ID: 9354446 [TBL] [Abstract][Full Text] [Related]
3. Sensitization of human breast cancer cells to cyclophosphamide and ifosfamide by transfer of a liver cytochrome P450 gene. Chen L; Waxman DJ; Chen D; Kufe DW Cancer Res; 1996 Mar; 56(6):1331-40. PubMed ID: 8640822 [TBL] [Abstract][Full Text] [Related]
4. Effects of hypoxia and limited diffusion in tumor cell microenvironment on bystander effect of P450 prodrug therapy. Günther M; Waxman DJ; Wagner E; Ogris M Cancer Gene Ther; 2006 Aug; 13(8):771-9. PubMed ID: 16543915 [TBL] [Abstract][Full Text] [Related]
5. Enhanced bystander cytotoxicity of P450 gene-directed enzyme prodrug therapy by expression of the antiapoptotic factor p35. Schwartz PS; Chen CS; Waxman DJ Cancer Res; 2002 Dec; 62(23):6928-37. PubMed ID: 12460909 [TBL] [Abstract][Full Text] [Related]
6. Impact of liver P450 reductase suppression on cyclophosphamide activation, pharmacokinetics and antitumoral activity in a cytochrome P450-based cancer gene therapy model. Huang Z; Raychowdhury MK; Waxman DJ Cancer Gene Ther; 2000 Jul; 7(7):1034-42. PubMed ID: 10917206 [TBL] [Abstract][Full Text] [Related]
7. Gene therapy for malignant gliomas using replication incompetent retroviral and adenoviral vectors encoding the cytochrome P450 2B1 gene together with cyclophosphamide. Manome Y; Wen PY; Chen L; Tanaka T; Dong Y; Yamazoe M; Hirshowitz A; Kufe DW; Fine HA Gene Ther; 1996 Jun; 3(6):513-20. PubMed ID: 8789801 [TBL] [Abstract][Full Text] [Related]
8. Retroviral transfer of human cytochrome P450 genes for oxazaphosphorine-based cancer gene therapy. Jounaidi Y; Hecht JE; Waxman DJ Cancer Res; 1998 Oct; 58(19):4391-401. PubMed ID: 9766669 [TBL] [Abstract][Full Text] [Related]
9. Sustained P450 expression and prodrug activation in bolus cyclophosphamide-treated cultured tumor cells. Impact of prodrug schedule on P450 gene-directed enzyme prodrug therapy. Schwartz PS; Chen CS; Waxman DJ Cancer Gene Ther; 2003 Aug; 10(8):571-82. PubMed ID: 12872138 [TBL] [Abstract][Full Text] [Related]
10. Modulation of cyclophosphamide-based cytochrome P450 gene therapy using liver P450 inhibitors. Huang Z; Waxman DJ Cancer Gene Ther; 2001 Jun; 8(6):450-8. PubMed ID: 11498765 [TBL] [Abstract][Full Text] [Related]
11. Enantioselective metabolism and cytotoxicity of R-ifosfamide and S-ifosfamide by tumor cell-expressed cytochromes P450. Chen CS; Jounaidi Y; Waxman DJ Drug Metab Dispos; 2005 Sep; 33(9):1261-7. PubMed ID: 15919850 [TBL] [Abstract][Full Text] [Related]
12. Cytochrome P450 reductase dependent inhibition of cytochrome P450 2B1 activity: Implications for gene directed enzyme prodrug therapy. Lengler J; Omann M; Düvier D; Holzmüller H; Gregor W; Salmons B; Günzburg WH; Renner M Biochem Pharmacol; 2006 Sep; 72(7):893-901. PubMed ID: 16887103 [TBL] [Abstract][Full Text] [Related]
13. Intratumoral activation and enhanced chemotherapeutic effect of oxazaphosphorines following cytochrome P-450 gene transfer: development of a combined chemotherapy/cancer gene therapy strategy. Chen L; Waxman DJ Cancer Res; 1995 Feb; 55(3):581-9. PubMed ID: 7834628 [TBL] [Abstract][Full Text] [Related]
14. Frequent, moderate-dose cyclophosphamide administration improves the efficacy of cytochrome P-450/cytochrome P-450 reductase-based cancer gene therapy. Jounaidi Y; Waxman DJ Cancer Res; 2001 Jun; 61(11):4437-44. PubMed ID: 11389073 [TBL] [Abstract][Full Text] [Related]
15. Prodrug bioactivation and oncolysis of diffuse liver metastases by a herpes simplex virus 1 mutant that expresses the CYP2B1 transgene. Pawlik TM; Nakamura H; Mullen JT; Kasuya H; Yoon SS; Chandrasekhar S; Chiocca EA; Tanabe KK Cancer; 2002 Sep; 95(5):1171-81. PubMed ID: 12209705 [TBL] [Abstract][Full Text] [Related]
16. Activation of oxazaphosphorines by cytochrome P450: application to gene-directed enzyme prodrug therapy for cancer. Roy P; Waxman DJ Toxicol In Vitro; 2006 Mar; 20(2):176-86. PubMed ID: 16293390 [TBL] [Abstract][Full Text] [Related]
17. Activation of the anticancer prodrugs cyclophosphamide and ifosfamide: identification of cytochrome P450 2B enzymes and site-specific mutants with improved enzyme kinetics. Chen CS; Lin JT; Goss KA; He YA; Halpert JR; Waxman DJ Mol Pharmacol; 2004 May; 65(5):1278-85. PubMed ID: 15102956 [TBL] [Abstract][Full Text] [Related]
18. Differential cytotoxicity and bystander effect of the rabbit cytochrome P450 4B1 enzyme gene by two different prodrugs: implications for pharmacogene therapy. Frank S; Steffens S; Fischer U; Tlolko A; Rainov NG; Kramm CM Cancer Gene Ther; 2002 Feb; 9(2):178-88. PubMed ID: 11857036 [TBL] [Abstract][Full Text] [Related]
19. Necrotic, rather than apoptotic, cell death caused by cytochrome P450-activated ifosfamide. Karle P; Renner M; Salmons B; Günzburg WH Cancer Gene Ther; 2001 Mar; 8(3):220-30. PubMed ID: 11332993 [TBL] [Abstract][Full Text] [Related]
20. Intraneoplastic polymer-based delivery of cyclophosphamide for intratumoral bioconversion by a replicating oncolytic viral vector. Ichikawa T; Petros WP; Ludeman SM; Fangmeier J; Hochberg FH; Colvin OM; Chiocca EA Cancer Res; 2001 Feb; 61(3):864-8. PubMed ID: 11221871 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]