These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 9816712)

  • 1. Effect of temperature on oviposition in four species of the melanogaster group of Drosophila.
    Srivastava T; Singh BN
    Rev Bras Biol; 1998 Aug; 58(3):491-5. PubMed ID: 9816712
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oviposition site preference in four species of Drosophila.
    Srivastava T; Singh BN
    Indian J Exp Biol; 1993 May; 31(5):460-2. PubMed ID: 8359855
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Choice of oviposition site between surface of the medium and paper in four Indian species of Drosophila.
    Srivastava T; Singh BN
    Indian J Exp Biol; 2001 Apr; 39(4):383-6. PubMed ID: 11491587
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Drosophila bipectinata species complex.
    Singh S; Singh BN
    Indian J Exp Biol; 2001 Sep; 39(9):835-44. PubMed ID: 11831362
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescence patterns of heterochromatin in mitotic and polytene chromosomes in seven members of three sub-groups of the melanogaster species group of Drosophila.
    Lakhotia SC; Mishra A
    Chromosoma; 1980; 81(1):137-50. PubMed ID: 6777123
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature sensitivity of circadian clocks is conserved across Drosophila species melanogaster, malerkotliana and ananassae.
    Prabhakaran PM; Sheeba V
    Chronobiol Int; 2014 Nov; 31(9):1008-16. PubMed ID: 25051431
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Divergent strategies for adaptations to stress resistance in two tropical Drosophila species: effects of developmental acclimation in D. bipectinata and the invasive species D. malerkotliana.
    Parkash R; Singh D; Lambhod C
    J Exp Biol; 2014 Mar; 217(Pt 6):924-34. PubMed ID: 24265421
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolutionary compromises to metabolic toxins: Ammonia and urea tolerance in Drosophila suzukii and Drosophila melanogaster.
    Belloni V; Galeazzi A; Bernini G; Mandrioli M; Versace E; Haase A
    Physiol Behav; 2018 Jul; 191():146-154. PubMed ID: 29679661
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oviposition site preferences and performance in natural resources in the human commensals Drosophila melanogaster and D. simulans.
    Soto EM; Soto IM; Cortese MD; Hasson E
    Fly (Austin); 2011; 5(2):102-9. PubMed ID: 21540639
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of the timing of exposure to cadmium on the oviposition behavior of Drosophila melanogaster.
    Bixler A; Schnee FB
    Biometals; 2018 Dec; 31(6):1075-1080. PubMed ID: 30298455
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reducing Drosophila suzukii emergence through inter-species competition.
    Shaw B; Brain P; Wijnen H; Fountain MT
    Pest Manag Sci; 2018 Jun; 74(6):1466-1471. PubMed ID: 29266721
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pupation-temperature range in 12 Drosophila species from different ecological backgrounds.
    Schnebel EM; Grossfield J
    Experientia; 1986 Jun; 42(6):600-4. PubMed ID: 3087766
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interspecific sexual isolation and phylogeny among different members of the Drosophila bipectinata species complex.
    Banerjee P; Singh BN
    Genetica; 2012 Mar; 140(1-3):75-81. PubMed ID: 22638827
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolution of increased larval competitive ability in Drosophila melanogaster without increased larval feeding rate.
    Sarangi M; Nagarajan A; Dey S; Bose J; Joshi A
    J Genet; 2016 Sep; 95(3):491-503. PubMed ID: 27659320
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ovulation stimulating substances in Drosophila biarmipes males: their origin, genetic variation in the response of females, and molecular characterization.
    Imamura M; Haino-Fukushima K; Aigaki T; Fuyama Y
    Insect Biochem Mol Biol; 1998; 28(5-6):365-72. PubMed ID: 9692238
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of extremely low-frequency magnetic fields on the oviposition of Drosophila melanogaster over three generations.
    Gonet B; Kosik-Bogacka DI; Kuźna-Grygiel W
    Bioelectromagnetics; 2009 Dec; 30(8):687-9. PubMed ID: 19630039
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of biotic and abiotic factors on pupation height in four species of Drosophila.
    Pandey MB; Singh BN
    Indian J Exp Biol; 1993 Nov; 31(11):912-7. PubMed ID: 8112766
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Responses of different Drosophila species to temperature changes.
    Huda A; Omelchenko AA; Vaden TJ; Castaneda AN; Ni L
    J Exp Biol; 2022 Jun; 225(11):. PubMed ID: 35481475
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intra- and interspecies variations in pupation height in Drosophila.
    Singh BN; Pandey M
    Indian J Exp Biol; 1991 Oct; 29(10):926-9. PubMed ID: 1814833
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Behavior genetics of choice of oviposition sites in Drosophila melanogaster. I. Genetic variability and analysis of behavior.
    Takamura T; Fuyama Y
    Behav Genet; 1980 Jan; 10(1):105-20. PubMed ID: 6775626
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.