BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

512 related articles for article (PubMed ID: 9817026)

  • 21. Identification of protein tyrosine phosphatases and dual-specificity phosphatases in mammalian spermatozoa and their role in sperm motility and protein tyrosine phosphorylation.
    González-Fernández L; Ortega-Ferrusola C; Macias-Garcia B; Salido GM; Peña FJ; Tapia JA
    Biol Reprod; 2009 Jun; 80(6):1239-52. PubMed ID: 19211810
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Crystal structure of PTP-SL/PTPBR7 catalytic domain: implications for MAP kinase regulation.
    Szedlacsek SE; Aricescu AR; Fulga TA; Renault L; Scheidig AJ
    J Mol Biol; 2001 Aug; 311(3):557-68. PubMed ID: 11493009
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Drugging the Undruggable: Therapeutic Potential of Targeting Protein Tyrosine Phosphatases.
    Zhang ZY
    Acc Chem Res; 2017 Jan; 50(1):122-129. PubMed ID: 27977138
    [TBL] [Abstract][Full Text] [Related]  

  • 24. trans-Beta-nitrostyrene derivatives as slow-binding inhibitors of protein tyrosine phosphatases.
    Park J; Pei D
    Biochemistry; 2004 Nov; 43(47):15014-21. PubMed ID: 15554709
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Functional studies of protein tyrosine phosphatases with chemical approaches.
    Zhang ZY
    Biochim Biophys Acta; 2005 Dec; 1754(1-2):100-7. PubMed ID: 16226063
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Receptor and nonreceptor protein tyrosine phosphatases in the nervous system.
    Paul S; Lombroso PJ
    Cell Mol Life Sci; 2003 Nov; 60(11):2465-82. PubMed ID: 14625689
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Catalytic inactivation of protein tyrosine phosphatase CD45 and protein tyrosine phosphatase 1B by polyaromatic quinones.
    Wang Q; Dubé D; Friesen RW; LeRiche TG; Bateman KP; Trimble L; Sanghara J; Pollex R; Ramachandran C; Gresser MJ; Huang Z
    Biochemistry; 2004 Apr; 43(14):4294-303. PubMed ID: 15065873
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Protein tyrosine phosphatases and signalling.
    Stoker AW
    J Endocrinol; 2005 Apr; 185(1):19-33. PubMed ID: 15817824
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synthesis, activity and molecular modeling of a new series of chromones as low molecular weight protein tyrosine phosphatase inhibitors.
    Forghieri M; Laggner C; Paoli P; Langer T; Manao G; Camici G; Bondioli L; Prati F; Costantino L
    Bioorg Med Chem; 2009 Apr; 17(7):2658-72. PubMed ID: 19297174
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Probing the molecular basis for potent and selective protein-tyrosine phosphatase 1B inhibition.
    Guo XL; Shen K; Wang F; Lawrence DS; Zhang ZY
    J Biol Chem; 2002 Oct; 277(43):41014-22. PubMed ID: 12193602
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Protein tyrosine phosphatases in osteoclast differentiation, adhesion, and bone resorption.
    Granot-Attas S; Elson A
    Eur J Cell Biol; 2008 Sep; 87(8-9):479-90. PubMed ID: 18342392
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A gatekeeper residue for inhibitor sensitization of protein tyrosine phosphatases.
    Bishop AC; Blair ER
    Bioorg Med Chem Lett; 2006 Aug; 16(15):4002-6. PubMed ID: 16716588
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Discovery of a potent, selective protein tyrosine phosphatase 1B inhibitor using a linked-fragment strategy.
    Szczepankiewicz BG; Liu G; Hajduk PJ; Abad-Zapatero C; Pei Z; Xin Z; Lubben TH; Trevillyan JM; Stashko MA; Ballaron SJ; Liang H; Huang F; Hutchins CW; Fesik SW; Jirousek MR
    J Am Chem Soc; 2003 Apr; 125(14):4087-96. PubMed ID: 12670229
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The role of protein tyrosine phosphorylation in the cell-cell interactions, junctional permeability and cell cycle control in post-confluent bovine corneal endothelial cells.
    Chen WL; Lin CT; Lo HF; Lee JW; Tu IH; Hu FR
    Exp Eye Res; 2007 Aug; 85(2):259-69. PubMed ID: 17624326
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Protein tyrosine phosphatases: structure and function, substrate specificity, and inhibitor development.
    Zhang ZY
    Annu Rev Pharmacol Toxicol; 2002; 42():209-34. PubMed ID: 11807171
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Expanding the role of Src and protein-tyrosine phosphatases balance in modulating osteoblast metabolism: lessons from mice.
    Zambuzzi WF; Milani R; Teti A
    Biochimie; 2010 Apr; 92(4):327-32. PubMed ID: 20083150
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Yeast substrate-trapping system for isolating substrates of protein tyrosine phosphatases.
    Fukada M; Noda M
    Methods Mol Biol; 2007; 365():371-82. PubMed ID: 17200575
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structural basis for inhibition of protein tyrosine phosphatases by Keggin compounds phosphomolybdate and phosphotungstate.
    Heo YS; Ryu JM; Park SM; Park JH; Lee HC; Hwang KY; Kim J
    Exp Mol Med; 2002 Jul; 34(3):211-23. PubMed ID: 12216113
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Protein tyrosine phosphatase inhibition by metals and metal complexes.
    Lu L; Zhu M
    Antioxid Redox Signal; 2014 May; 20(14):2210-24. PubMed ID: 24382261
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Drug discovery and protein tyrosine phosphatases.
    Blaskovich MA
    Curr Med Chem; 2009; 16(17):2095-176. PubMed ID: 19519384
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.