BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 9817072)

  • 1. The relevance of enzymatic oxidation by horseradish peroxidase to antitumour potency of imidazoacridinone derivatives.
    Mazerska Z; Gorlewska K; Kraciuk A; Konopa J
    Chem Biol Interact; 1998 Aug; 115(1):1-22. PubMed ID: 9817072
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Similarity between enzymatic and electrochemical oxidation of 2-hydroxyacridinone, the reference compound of antitumor imidazoacridinones.
    Mazerska Z
    Acta Biochim Pol; 2003; 50(2):515-25. PubMed ID: 12833176
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular mechanism of the enzymatic oxidation investigated for imidazoacridinone antitumor drug, C-1311.
    Mazerska Z; Sowiński P; Konopa J
    Biochem Pharmacol; 2003 Nov; 66(9):1727-36. PubMed ID: 14563483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzymatic activation of a new antitumour drug, 5-diethylaminoethylamino-8-hydroxyimidazoacridinone, C-1311, observed after its intercalation into DNA.
    Mazerska Z; Dziegielewski J; Konopa J
    Biochem Pharmacol; 2001 Mar; 61(6):685-94. PubMed ID: 11266653
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidative metabolism of the anti-cancer agent mitoxantrone by horseradish, lacto-and lignin peroxidase.
    Brück TB; Brück DW
    Biochimie; 2011 Feb; 93(2):217-26. PubMed ID: 20887767
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzymatic oxidative activation of 5-iminodaunorubicin. Spectrophotometric and electron paramagnetic resonance studies.
    Kolodziejczyk P; Reszka K; Lown JW
    Biochem Pharmacol; 1989 Mar; 38(5):803-9. PubMed ID: 2539159
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzymatic oxidative activation and transformation of the antitumor agent mitoxantrone.
    Kolodziejczyk P; Reszka K; Lown JW
    Free Radic Biol Med; 1988; 5(1):13-25. PubMed ID: 3254299
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Horseradish peroxidase-catalyzed oxidation of chlorophyll a with hydrogen peroxide: characterization of the products and mechanism of the reaction.
    Hynninen PH; Kaartinen V; Kolehmainen E
    Biochim Biophys Acta; 2010 May; 1797(5):531-42. PubMed ID: 20097155
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic transformations of antitumor imidazoacridinone, C-1311, with microsomal fractions of rat and human liver.
    Wiśniewska A; Chrapkowska A; Kot-Wasik A; Konopa J; Mazerska Z
    Acta Biochim Pol; 2007; 54(4):831-8. PubMed ID: 18084652
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A one-electron oxidation of carcinogenic nonaminoazo dye Sudan I by horseradish peroxidase.
    Semanska M; Dracinsky M; Martinek V; Hudecek J; Hodek P; Frei E; Stiborova M
    Neuro Endocrinol Lett; 2008 Oct; 29(5):712-6. PubMed ID: 18987613
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzymatic oxidation of rutin by horseradish peroxidase: kinetic mechanism and identification of a dimeric product by LC-Orbitrap mass spectrometry.
    Savic S; Vojinovic K; Milenkovic S; Smelcerovic A; Lamshoeft M; Petronijevic Z
    Food Chem; 2013 Dec; 141(4):4194-9. PubMed ID: 23993605
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The oxidation of indole derivatives catalyzed by horseradish peroxidase is highly chemiluminescent.
    Ximenes VF; Campa A; Catalani LH
    Arch Biochem Biophys; 2001 Mar; 387(2):173-9. PubMed ID: 11370838
    [TBL] [Abstract][Full Text] [Related]  

  • 13. QSAR of acridines, III. Structure-activity relationship for antitumour imidazoacridinones and intercorrelations between in vivo and in vitro tests.
    Mazerska Z; Augustin E; Dziegielewski J; Chołody MW; Konopa J
    Anticancer Drug Des; 1996 Jan; 11(1):73-88. PubMed ID: 8639249
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enzymatic enhancement of the catalytic rate of sulfhydryl oxidase.
    Koszalka GW; Swaisgood HE; Horton HR
    Biochim Biophys Acta; 1987 Sep; 915(2):321-9. PubMed ID: 3115296
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electron paramagnetic resonance and ultraviolet/visible study of compounds I and II in the horseradish peroxidase-H(2)O(2)-silk fiber reaction system.
    Oliva C; Freddi G; Repetto S; D'Ambrosio A
    Spectrochim Acta A Mol Biomol Spectrosc; 2003 Jun; 59(8):1911-7. PubMed ID: 12736077
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Horseradish peroxidase catalyzed nitric oxide formation from hydroxyurea.
    Huang J; Sommers EM; Kim-Shapiro DB; King SB
    J Am Chem Soc; 2002 Apr; 124(13):3473-80. PubMed ID: 11916434
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The oxidation of p-phenetidine by horseradish peroxidase and prostaglandin synthase and the fate of glutathione during such oxidations.
    Ross D; Larsson R; Andersson B; Nilsson U; Lindquist T; Lindeke B; Moldéus P
    Biochem Pharmacol; 1985 Feb; 34(3):343-51. PubMed ID: 2982385
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transformation, products, and pathways of chlorophenols via electro-enzymatic catalysis: How to control toxic intermediate products.
    Du P; Zhao H; Li H; Zhang D; Huang CH; Deng M; Liu C; Cao H
    Chemosphere; 2016 Feb; 144():1674-81. PubMed ID: 26519798
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxidation mechanism of vitamin E analogue (Trolox C, 6-hydroxy-2,2,5,7,8-pentamethylchroman) and vitamin E by horseradish peroxidase and myoglobin.
    Nakamura M; Hayashi T
    Arch Biochem Biophys; 1992 Dec; 299(2):313-9. PubMed ID: 1332620
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA strand breakage by peroxidase-activated mitoxantrone.
    Fisher GR; Patterson LH
    J Pharm Pharmacol; 1991 Jan; 43(1):65-8. PubMed ID: 1676068
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.