These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 9817416)
1. Functional evaluation using magnetic resonance imaging of the visual cortex in patients with retrochiasmatic lesions. Kollias SS; Landau K; Khan N; Golay X; Bernays R; Yonekawa Y; Valavanis A J Neurosurg; 1998 Nov; 89(5):780-90. PubMed ID: 9817416 [TBL] [Abstract][Full Text] [Related]
2. Detection of visual dysfunction in optic atrophy by functional magnetic resonance imaging during monocular visual stimulation. Miki A; Nakajima T; Takagi M; Shirakashi M; Abe H Am J Ophthalmol; 1996 Sep; 122(3):404-15. PubMed ID: 8794713 [TBL] [Abstract][Full Text] [Related]
3. The role of functional MR imaging in patients with ischemia in the visual cortex. Lee YJ; Chung TS; Yoon YS; Lee MS; Han SH; Seong GJ; Ahn KJ AJNR Am J Neuroradiol; 2001; 22(6):1043-9. PubMed ID: 11415895 [TBL] [Abstract][Full Text] [Related]
4. Intraoperative validation of functional magnetic resonance imaging and cortical reorganization patterns in patients with brain tumors involving the primary motor cortex. Fandino J; Kollias SS; Wieser HG; Valavanis A; Yonekawa Y J Neurosurg; 1999 Aug; 91(2):238-50. PubMed ID: 10433312 [TBL] [Abstract][Full Text] [Related]
5. Scotoma perception in white-noise-field campimetry and postchiasmal visual pathway lesions. Kolb M; Petersen D; Schiefer U; Kolb R; Skalej M Ger J Ophthalmol; 1995 Jul; 4(4):228-33. PubMed ID: 7492935 [TBL] [Abstract][Full Text] [Related]
6. Peripheral homonymous hemianopia: correlation between lesion location and visual field defects by means of cytoarchitectonic probabilistic maps. Papageorgiou E; Ticini LF; Schiefer U J Neuroophthalmol; 2012 Mar; 32(1):5-12. PubMed ID: 21623227 [TBL] [Abstract][Full Text] [Related]
7. Functional magnetic resonance imaging of the primary visual cortex: evaluation of human afferent visual system. Miki A; Nakajima T; Fujita M; Wantanabe H; Kuwabara T; Naruse S; Takagi M; Abe H Jpn J Ophthalmol; 1995; 39(3):302-8. PubMed ID: 8577083 [TBL] [Abstract][Full Text] [Related]
8. Objective perimetry using the multifocal visual evoked potential in central visual pathway lesions. Klistorner AI; Graham SL; Grigg J; Balachandran C Br J Ophthalmol; 2005 Jun; 89(6):739-44. PubMed ID: 15923511 [TBL] [Abstract][Full Text] [Related]
9. Functional organisation of visual pathways in a patient with no optic chiasm. Davies-Thompson J; Scheel M; Jane Lanyon L; Sinclair Barton JJ Neuropsychologia; 2013 Jun; 51(7):1260-72. PubMed ID: 23563109 [TBL] [Abstract][Full Text] [Related]
10. Functional magnetic resonance imaging in homonymous hemianopsia. Miki A; Nakajima T; Fujita M; Takagi M; Abe H Am J Ophthalmol; 1996 Mar; 121(3):258-66. PubMed ID: 8597268 [TBL] [Abstract][Full Text] [Related]
11. A comparison of tangent screen, goldmann, and humphrey perimetry in the detection and localization of occipital lesions. Wong AM; Sharpe JA Ophthalmology; 2000 Mar; 107(3):527-44. PubMed ID: 10711892 [TBL] [Abstract][Full Text] [Related]
12. Prediction of neurological deficits and recovery after surgery in the supplementary motor area: a prospective study in 26 patients. Rosenberg K; Nossek E; Liebling R; Fried I; Shapira-Lichter I; Hendler T; Ram Z J Neurosurg; 2010 Dec; 113(6):1152-63. PubMed ID: 20635854 [TBL] [Abstract][Full Text] [Related]
13. Presurgical motor and somatosensory cortex mapping with functional magnetic resonance imaging and positron emission tomography. Bittar RG; Olivier A; Sadikot AF; Andermann F; Pike GB; Reutens DC J Neurosurg; 1999 Dec; 91(6):915-21. PubMed ID: 10584835 [TBL] [Abstract][Full Text] [Related]
14. Discordance between subjective perimetric visual fields and objective multifocal visual evoked potential-determined visual fields in patients with hemianopsia. Watanabe K; Shinoda K; Kimura I; Mashima Y; Oguchi Y; Ohde H Am J Ophthalmol; 2007 Feb; 143(2):295-304. PubMed ID: 17184719 [TBL] [Abstract][Full Text] [Related]
15. [Functional magnetic resonance imaging of the human primary visual cortex during visual stimulation]. Miki A; Nakajima T; Fujita M; Watanabe H; Kuwabara T; Naruse S; Takagi M; Abe H Nippon Ganka Gakkai Zasshi; 1995 May; 99(5):612-7. PubMed ID: 7785519 [TBL] [Abstract][Full Text] [Related]
16. Clinical study of the visual field defects caused by occipital lobe lesions. Ogawa K; Ishikawa H; Suzuki Y; Oishi M; Kamei S Cerebrovasc Dis; 2014; 37(2):102-8. PubMed ID: 24435066 [TBL] [Abstract][Full Text] [Related]
17. Patterns of functional magnetic resonance imaging activation in association with structural lesions in the rolandic region: a classification system. Carpentier AC; Constable RT; Schlosser MJ; de Lotbinière A; Piepmeier JM; Spencer DD; Awad IA J Neurosurg; 2001 Jun; 94(6):946-54. PubMed ID: 11409524 [TBL] [Abstract][Full Text] [Related]
18. The missing temporal crescent. Landau K; Wichmann W; Valavanis A Am J Ophthalmol; 1995 Mar; 119(3):345-9. PubMed ID: 7741877 [TBL] [Abstract][Full Text] [Related]
19. Perimetric visual field and functional MRI correlation: implications for image-guided surgery in occipital brain tumours. Roux FE; Ibarrola D; Lotterie JA; Chollet F; Berry I J Neurol Neurosurg Psychiatry; 2001 Oct; 71(4):505-14. PubMed ID: 11561035 [TBL] [Abstract][Full Text] [Related]
20. Population receptive field analysis of the primary visual cortex complements perimetry in patients with homonymous visual field defects. Papanikolaou A; Keliris GA; Papageorgiou TD; Shao Y; Krapp E; Papageorgiou E; Stingl K; Bruckmann A; Schiefer U; Logothetis NK; Smirnakis SM Proc Natl Acad Sci U S A; 2014 Apr; 111(16):E1656-65. PubMed ID: 24706881 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]