These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 9817674)

  • 1. [Microrough surface and its bio-effects of metallic biomaterials (I)--microrough surface of metallic biomaterials].
    Wen X; Wang X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 1997 Mar; 14(1):77-80, 86. PubMed ID: 9817674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microrough surface of metallic biomaterials: a literature review.
    Wen X; Wang X; Zhang N
    Biomed Mater Eng; 1996; 6(3):173-89. PubMed ID: 8922263
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Microrough surface and its bio-effects of metallic biomaterials (II)--bio-effects of microrough surface of metallic biomaterials].
    Wen X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 1997 Jun; 14(2):164-9. PubMed ID: 9817647
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acceleration of apatite nucleation on microrough bioactive titanium for bone-replacing implants.
    Aparicio C; Manero JM; Conde F; Pegueroles M; Planell JA; Vallet-Regí M; Gil FJ
    J Biomed Mater Res A; 2007 Sep; 82(3):521-9. PubMed ID: 17295245
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microrough implant surface topographies increase osteogenesis by reducing osteoclast formation and activity.
    Lossdörfer S; Schwartz Z; Wang L; Lohmann CH; Turner JD; Wieland M; Cochran DL; Boyan BD
    J Biomed Mater Res A; 2004 Sep; 70(3):361-9. PubMed ID: 15293309
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The golden anniversary of titanium biomaterials.
    Williams D
    Med Device Technol; 2001 Sep; 12(7):8-11. PubMed ID: 12938552
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microrough titanium surface affects biologic response in MG63 osteoblast-like cells.
    Kim MJ; Kim CW; Lim YJ; Heo SJ
    J Biomed Mater Res A; 2006 Dec; 79(4):1023-32. PubMed ID: 17034031
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Titanate biomaterials with enhanced antiinflammatory properties.
    Contreras R; Sahlin H; Frangos JA
    J Biomed Mater Res A; 2007 Feb; 80(2):480-5. PubMed ID: 17013866
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interface interactions of osteoblasts with structured titanium and the correlation between physicochemical characteristics and cell biological parameters.
    Nebe JG; Luethen F; Lange R; Beck U
    Macromol Biosci; 2007 May; 7(5):567-78. PubMed ID: 17457937
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The bone response of oxidized bioactive and non-bioactive titanium implants.
    Sul YT; Johansson C; Byon E; Albrektsson T
    Biomaterials; 2005 Nov; 26(33):6720-30. PubMed ID: 15975649
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced osteoblast response to an equal channel angular pressing-processed pure titanium substrate with microrough surface topography.
    Park JW; Kim YJ; Park CH; Lee DH; Ko YG; Jang JH; Lee CS
    Acta Biomater; 2009 Oct; 5(8):3272-80. PubMed ID: 19426841
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface mechanical properties, corrosion resistance, and cytocompatibility of nitrogen plasma-implanted nickel-titanium alloys: a comparative study with commonly used medical grade materials.
    Yeung KW; Poon RW; Chu PK; Chung CY; Liu XY; Lu WW; Chan D; Chan SC; Luk KD; Cheung KM
    J Biomed Mater Res A; 2007 Aug; 82(2):403-14. PubMed ID: 17295246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Corrosion resistance and ion dissolution of titanium with different surface microroughness.
    Chen G; Wen X; Zhang N
    Biomed Mater Eng; 1998; 8(2):61-74. PubMed ID: 9830989
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of microrough bioactive glass surface: surface reactions and osteoblast responses in vitro.
    Itälä A; Ylänen HO; Yrjans J; Heino T; Hentunen T; Hupa M; Aro HT
    J Biomed Mater Res; 2002 Dec; 62(3):404-11. PubMed ID: 12209926
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Applications of sol-gel method in preparation of biomaterials].
    Chen Z; Zou H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2001 Dec; 18(4):629-32. PubMed ID: 11791325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of surface pretreatment of titanium- and cobalt-based biomaterials on covalent immobilization of fibrillar collagen.
    Müller R; Abke J; Schnell E; Scharnweber D; Kujat R; Englert C; Taheri D; Nerlich M; Angele P
    Biomaterials; 2006 Aug; 27(22):4059-68. PubMed ID: 16580064
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bone ingrowth in porous titanium implants produced by 3D fiber deposition.
    Li JP; Habibovic P; van den Doel M; Wilson CE; de Wijn JR; van Blitterswijk CA; de Groot K
    Biomaterials; 2007 Jun; 28(18):2810-20. PubMed ID: 17367852
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomaterials in laryngotracheal surgery: a solvable problem in the near future?
    Debry C; Schultz P; Vautier D
    J Laryngol Otol; 2003 Feb; 117(2):113-7. PubMed ID: 12625883
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Characterization of anticoagulant biomaterial and its development].
    Chen B; Huo D; Rao J; Hou C; Li M
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Apr; 22(2):428-32. PubMed ID: 15884572
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent advances in the design of titanium alloys for orthopedic applications.
    Guillemot F
    Expert Rev Med Devices; 2005 Nov; 2(6):741-8. PubMed ID: 16293101
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.