BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 9817941)

  • 1. MicroRaman spectral study of the PO4 and CO3 vibrational modes in synthetic and biological apatites.
    Penel G; Leroy G; Rey C; Bres E
    Calcif Tissue Int; 1998 Dec; 63(6):475-81. PubMed ID: 9817941
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of Synthetic Hydroxyapatite Fibers Using High-Resolution, Polarized Raman Spectroscopy.
    Shah FA
    Appl Spectrosc; 2021 Apr; 75(4):475-479. PubMed ID: 32588640
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation, analysis, and characterization of carbonated apatites.
    Nelson DG; Featherstone JD
    Calcif Tissue Int; 1982; 34 Suppl 2():S69-81. PubMed ID: 6293677
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Composition of bone and apatitic biomaterials as revealed by intravital Raman microspectroscopy.
    Penel G; Delfosse C; Descamps M; Leroy G
    Bone; 2005 May; 36(5):893-901. PubMed ID: 15814305
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coupled substitution of type A and B carbonate in sodium-bearing apatite.
    Fleet ME; Liu X
    Biomaterials; 2007 Feb; 28(6):916-26. PubMed ID: 17123599
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbonate assignment and calibration in the Raman spectrum of apatite.
    Awonusi A; Morris MD; Tecklenburg MM
    Calcif Tissue Int; 2007 Jul; 81(1):46-52. PubMed ID: 17551767
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resolution-enhanced Fourier transform infrared spectroscopy study of the environment of phosphate ions in the early deposits of a solid phase of calcium-phosphate in bone and enamel, and their evolution with age. I: Investigations in the upsilon 4 PO4 domain.
    Rey C; Shimizu M; Collins B; Glimcher MJ
    Calcif Tissue Int; 1990 Jun; 46(6):384-94. PubMed ID: 2364326
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Micro-Raman and FTIR studies of synthetic and natural apatites.
    Antonakos A; Liarokapis E; Leventouri T
    Biomaterials; 2007 Jul; 28(19):3043-54. PubMed ID: 17382382
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Infrared spectroscopic characterization of carbonated apatite: a combined experimental and computational study.
    Ren F; Ding Y; Leng Y
    J Biomed Mater Res A; 2014 Feb; 102(2):496-505. PubMed ID: 23533194
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vibrational spectroscopy of the phosphate mineral kovdorskite-Mg2PO4(OH)·3H2O.
    Frost RL; López A; Xi Y; Granja A; Scholz R; Lima RM
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Oct; 114():309-15. PubMed ID: 23778171
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbonate ions in apatites: infrared investigations in the upsilon 4 CO3 domain.
    el Feki H; Rey C; Vignoles M
    Calcif Tissue Int; 1991 Oct; 49(4):269-74. PubMed ID: 1760771
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vibrational spectral fingerprinting for chemical recognition of biominerals.
    Calzolari A; Pavan B; Curtarolo S; Buongiorno Nardelli M; Fornari M
    Chemphyschem; 2020 Apr; 21(8):770-778. PubMed ID: 32107826
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A vibrational spectroscopic study of the phosphate mineral whiteite CaMn(++)Mg2Al2(PO4)4(OH)2·8(H2O).
    Frost RL; Scholz R; López A; Xi Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Apr; 124():243-8. PubMed ID: 24491665
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Infrared and Raman microspectrometry study of fluor-fluor-hydroxy and hydroxy-apatite powders.
    Penel G; Leroy G; Rey C; Sombret B; Huvenne JP; Bres E
    J Mater Sci Mater Med; 1997 May; 8(5):271-6. PubMed ID: 15348748
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectroscopic characterization of chromite from the Moa-Baracoa Ophiolitic Massif, Cuba.
    Reddy BJ; Frost RL
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Jun; 61(8):1721-8. PubMed ID: 15863040
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The molecular structure of the phosphate mineral beraunite Fe(2+)Fe5(3+)(PO4)4(OH)5⋅4H2O--a vibrational spectroscopic study.
    Frost RL; López A; Scholz R; Xi Y; Lana C
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jul; 128():408-12. PubMed ID: 24682056
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A vibrational spectroscopic study of the phosphate mineral minyulite KAl2(OH,F)(PO4)2⋅4(H2O) and in comparison with wardite.
    Frost RL; López A; Xi Y; Cardoso LH; Scholz R
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Apr; 124():34-9. PubMed ID: 24457936
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Synthesis and characterization of CO-3(2-) doping nano-hydroxyapatite].
    Liao JG; Li YQ; Duan XZ; Liu Q
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Nov; 34(11):3011-4. PubMed ID: 25752048
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparative infrared spectroscopic study of hydroxide and carbonate absorption bands in spectra of shark enameloid, shark dentin, and a geological apatite.
    Dahm S; Risnes S
    Calcif Tissue Int; 1999 Dec; 65(6):459-65. PubMed ID: 10594165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A vibrational spectroscopic study of the anhydrous phosphate mineral sidorenkite Na3Mn(PO4)(CO3).
    Frost RL; López A; Scholz R; Belotti FM; Xi Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Feb; 137():930-4. PubMed ID: 25282022
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.