These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
252 related articles for article (PubMed ID: 9818149)
41. A Toll/interleukin (IL)-1 receptor domain protein from Yersinia pestis interacts with mammalian IL-1/Toll-like receptor pathways but does not play a central role in the virulence of Y. pestis in a mouse model of bubonic plague. Spear AM; Rana RR; Jenner DC; Flick-Smith HC; Oyston PCF; Simpson P; Matthews SJ; Byrne B; Atkins HS Microbiology (Reading); 2012 Jun; 158(Pt 6):1593-1606. PubMed ID: 22403187 [TBL] [Abstract][Full Text] [Related]
42. The 102-kilobase pgm locus of Yersinia pestis: sequence analysis and comparison of selected regions among different Yersinia pestis and Yersinia pseudotuberculosis strains. Buchrieser C; Rusniok C; Frangeul L; Couve E; Billault A; Kunst F; Carniel E; Glaser P Infect Immun; 1999 Sep; 67(9):4851-61. PubMed ID: 10456941 [TBL] [Abstract][Full Text] [Related]
43. Biosynthesis of Yersiniabactin, a complex polyketide-nonribosomal peptide, using Escherichia coli as a heterologous host. Pfeifer BA; Wang CC; Walsh CT; Khosla C Appl Environ Microbiol; 2003 Nov; 69(11):6698-702. PubMed ID: 14602630 [TBL] [Abstract][Full Text] [Related]
44. YbtT is a low-specificity type II thioesterase that maintains production of the metallophore yersiniabactin in pathogenic enterobacteria. Ohlemacher SI; Xu Y; Kober DL; Malik M; Nix JC; Brett TJ; Henderson JP J Biol Chem; 2018 Dec; 293(51):19572-19585. PubMed ID: 30355735 [TBL] [Abstract][Full Text] [Related]
45. Droplet Tn-Seq identifies the primary secretion mechanism for yersiniabactin in Yersinia pestis. Price SL; Thibault D; Garrison TM; Brady A; Guo H; Kehl-Fie TE; Garneau-Tsodikova S; Perry RD; van Opijnen T; Lawrenz MB EMBO Rep; 2023 Oct; 24(10):e57369. PubMed ID: 37501563 [TBL] [Abstract][Full Text] [Related]
46. Zinc transporters YbtX and ZnuABC are required for the virulence of Yersinia pestis in bubonic and pneumonic plague in mice. Bobrov AG; Kirillina O; Fosso MY; Fetherston JD; Miller MC; VanCleave TT; Burlison JA; Arnold WK; Lawrenz MB; Garneau-Tsodikova S; Perry RD Metallomics; 2017 Jun; 9(6):757-772. PubMed ID: 28540946 [TBL] [Abstract][Full Text] [Related]
47. Extraction, purification, and identification of yersiniabactin, the siderophore of Yersinia pestis. Miller MC; DeMoll E Curr Protoc Microbiol; 2011 Nov; Chapter 5():Unit5B.3. PubMed ID: 22045585 [TBL] [Abstract][Full Text] [Related]
48. Proteomic analysis of iron acquisition, metabolic and regulatory responses of Yersinia pestis to iron starvation. Pieper R; Huang ST; Parmar PP; Clark DJ; Alami H; Fleischmann RD; Perry RD; Peterson SN BMC Microbiol; 2010 Jan; 10():30. PubMed ID: 20113483 [TBL] [Abstract][Full Text] [Related]
49. Characterization of the Yersinia pestis Yfu ABC inorganic iron transport system. Gong S; Bearden SW; Geoffroy VA; Fetherston JD; Perry RD Infect Immun; 2001 May; 69(5):2829-37. PubMed ID: 11292695 [TBL] [Abstract][Full Text] [Related]
50. Yersinia ironomics: comparison of iron transporters among Yersinia pestis biotypes and its nearest neighbor, Yersinia pseudotuberculosis. Forman S; Paulley JT; Fetherston JD; Cheng YQ; Perry RD Biometals; 2010 Apr; 23(2):275-94. PubMed ID: 20049509 [TBL] [Abstract][Full Text] [Related]
51. The Yfe system of Yersinia pestis transports iron and manganese and is required for full virulence of plague. Bearden SW; Perry RD Mol Microbiol; 1999 Apr; 32(2):403-14. PubMed ID: 10231495 [TBL] [Abstract][Full Text] [Related]
53. Transcriptome analysis of Yersinia pestis in human plasma: an approach for discovering bacterial genes involved in septicaemic plague. Chauvaux S; Rosso ML; Frangeul L; Lacroix C; Labarre L; Schiavo A; Marceau M; Dillies MA; Foulon J; Coppée JY; Médigue C; Simonet M; Carniel E Microbiology (Reading); 2007 Sep; 153(Pt 9):3112-3124. PubMed ID: 17768254 [TBL] [Abstract][Full Text] [Related]
54. The Yersinia high-pathogenicity island and iron-uptake systems in clinical isolates of Escherichia coli. Koczura R; Kaznowski A J Med Microbiol; 2003 Aug; 52(Pt 8):637-642. PubMed ID: 12867556 [TBL] [Abstract][Full Text] [Related]
55. Purification of yersiniabactin: a siderophore and possible virulence factor of Yersinia enterocolitica. Haag H; Hantke K; Drechsel H; Stojiljkovic I; Jung G; Zähner H J Gen Microbiol; 1993 Sep; 139(9):2159-65. PubMed ID: 8245841 [TBL] [Abstract][Full Text] [Related]
56. The crystal structure of the Yersinia pestis iron chaperone YiuA reveals a basic triad binding motif for the chelated metal. Radka CD; Chen D; DeLucas LJ; Aller SG Acta Crystallogr D Struct Biol; 2017 Nov; 73(Pt 11):921-939. PubMed ID: 29095164 [TBL] [Abstract][Full Text] [Related]
58. The role of transition metal transporters for iron, zinc, manganese, and copper in the pathogenesis of Yersinia pestis. Perry RD; Bobrov AG; Fetherston JD Metallomics; 2015 Jun; 7(6):965-78. PubMed ID: 25891079 [TBL] [Abstract][Full Text] [Related]
59. The nonribosomal peptide synthetase HMWP2 forms a thiazoline ring during biogenesis of yersiniabactin, an iron-chelating virulence factor of yersinia pestis. Gehring AM; Mori I; Perry RD; Walsh CT Biochemistry; 1998 Dec; 37(48):17104. PubMed ID: 9836605 [No Abstract] [Full Text] [Related]
60. Yersiniabactin production by Pseudomonas syringae and Escherichia coli, and description of a second yersiniabactin locus evolutionary group. Bultreys A; Gheysen I; de Hoffmann E Appl Environ Microbiol; 2006 Jun; 72(6):3814-25. PubMed ID: 16751485 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]