These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
252 related articles for article (PubMed ID: 9818149)
61. Irp9, encoded by the high-pathogenicity island of Yersinia enterocolitica, is able to convert chorismate into salicylate, the precursor of the siderophore yersiniabactin. Pelludat C; Brem D; Heesemann J J Bacteriol; 2003 Sep; 185(18):5648-53. PubMed ID: 12949119 [TBL] [Abstract][Full Text] [Related]
62. Small-molecule inhibition of siderophore biosynthesis in Mycobacterium tuberculosis and Yersinia pestis. Ferreras JA; Ryu JS; Di Lello F; Tan DS; Quadri LE Nat Chem Biol; 2005 Jun; 1(1):29-32. PubMed ID: 16407990 [TBL] [Abstract][Full Text] [Related]
63. Yersiniabactin and other siderophores produced by clinical isolates of Enterobacter spp. and Citrobacter spp. Mokracka J; Koczura R; Kaznowski A FEMS Immunol Med Microbiol; 2004 Jan; 40(1):51-5. PubMed ID: 14734186 [TBL] [Abstract][Full Text] [Related]
64. Essential PchG-dependent reduction in pyochelin biosynthesis of Pseudomonas aeruginosa. Reimmann C; Patel HM; Serino L; Barone M; Walsh CT; Haas D J Bacteriol; 2001 Feb; 183(3):813-20. PubMed ID: 11208777 [TBL] [Abstract][Full Text] [Related]
65. Yersinia spp. HMWP2, a cytosolic protein with a cryptic internal signal sequence which can promote alkaline phosphatase export. Guilvout I; Carniel E; Pugsley AP J Bacteriol; 1995 Apr; 177(7):1780-7. PubMed ID: 7896701 [TBL] [Abstract][Full Text] [Related]
66. Total Biosynthesis and Diverse Applications of the Nonribosomal Peptide-Polyketide Siderophore Yersiniabactin. Ahmadi MK; Fawaz S; Jones CH; Zhang G; Pfeifer BA Appl Environ Microbiol; 2015 Aug; 81(16):5290-8. PubMed ID: 26025901 [TBL] [Abstract][Full Text] [Related]
67. Virulence of Yersinia enterocolitica is closely associated with siderophore production, expression of an iron-repressible outer membrane polypeptide of 65,000 Da and pesticin sensitivity. Heesemann J; Hantke K; Vocke T; Saken E; Rakin A; Stojiljkovic I; Berner R Mol Microbiol; 1993 Apr; 8(2):397-408. PubMed ID: 8316088 [TBL] [Abstract][Full Text] [Related]
68. Chromosomal irp2 gene in Yersinia: distribution, expression, deletion and impact on virulence. de Almeida AM; Guiyoule A; Guilvout I; Iteman I; Baranton G; Carniel E Microb Pathog; 1993 Jan; 14(1):9-21. PubMed ID: 8321119 [TBL] [Abstract][Full Text] [Related]
69. Prevalence of the "high-pathogenicity island" of Yersinia species among Escherichia coli strains that are pathogenic to humans. Schubert S; Rakin A; Karch H; Carniel E; Heesemann J Infect Immun; 1998 Feb; 66(2):480-5. PubMed ID: 9453599 [TBL] [Abstract][Full Text] [Related]
70. Evidence for two evolutionary lineages of highly pathogenic Yersinia species. Rakin A; Urbitsch P; Heesemann J J Bacteriol; 1995 May; 177(9):2292-8. PubMed ID: 7730256 [TBL] [Abstract][Full Text] [Related]
71. Transcriptional regulation of high pathogenicity island iron uptake genes by YbtA. Anisimov R; Brem D; Heesemann J; Rakin A Int J Med Microbiol; 2005 Apr; 295(1):19-28. PubMed ID: 15861813 [TBL] [Abstract][Full Text] [Related]
72. Genetics and assembly line enzymology of siderophore biosynthesis in bacteria. Crosa JH; Walsh CT Microbiol Mol Biol Rev; 2002 Jun; 66(2):223-49. PubMed ID: 12040125 [TBL] [Abstract][Full Text] [Related]
73. An ABC transporter system of Yersinia pestis allows utilization of chelated iron by Escherichia coli SAB11. Bearden SW; Staggs TM; Perry RD J Bacteriol; 1998 Mar; 180(5):1135-47. PubMed ID: 9495751 [TBL] [Abstract][Full Text] [Related]
74. Yersiniabactin reduces the respiratory oxidative stress response of innate immune cells. Paauw A; Leverstein-van Hall MA; van Kessel KP; Verhoef J; Fluit AC PLoS One; 2009 Dec; 4(12):e8240. PubMed ID: 20041108 [TBL] [Abstract][Full Text] [Related]
75. The transcriptional regulation of the horizontally acquired iron uptake system, yersiniabactin and its contribution to oxidative stress tolerance and pathogenicity of globally emerging Diamant I; Adani B; Sylman M; Rahav G; Gal-Mor O Gut Microbes; 2024; 16(1):2369339. PubMed ID: 38962965 [TBL] [Abstract][Full Text] [Related]
76. Assembly of the Pseudomonas aeruginosa nonribosomal peptide siderophore pyochelin: In vitro reconstitution of aryl-4, 2-bisthiazoline synthetase activity from PchD, PchE, and PchF. Quadri LE; Keating TA; Patel HM; Walsh CT Biochemistry; 1999 Nov; 38(45):14941-54. PubMed ID: 10555976 [TBL] [Abstract][Full Text] [Related]
77. High-pathogenicity island of Yersinia pestis in enterobacteriaceae isolated from blood cultures and urine samples: prevalence and functional expression. Schubert S; Cuenca S; Fischer D; Heesemann J J Infect Dis; 2000 Oct; 182(4):1268-71. PubMed ID: 10979932 [TBL] [Abstract][Full Text] [Related]
78. Metabolomics Assay Identified a Novel Virulence-Associated Siderophore Encoded by the High-Pathogenicity Island in Uropathogenic Escherichia coli. Xu G; Guo H; Lv H J Proteome Res; 2019 May; 18(5):2331-2336. PubMed ID: 30994357 [TBL] [Abstract][Full Text] [Related]
79. In vitro reconstitution of the Pseudomonas aeruginosa nonribosomal peptide synthesis of pyochelin: characterization of backbone tailoring thiazoline reductase and N-methyltransferase activities. Patel HM; Walsh CT Biochemistry; 2001 Jul; 40(30):9023-31. PubMed ID: 11467965 [TBL] [Abstract][Full Text] [Related]
80. Relationship between loss of pigmentation and deletion of the chromosomal iron-regulated irp2 gene in Yersinia pestis: evidence for separate but related events. Iteman I; Guiyoule A; de Almeida AM; Guilvout I; Baranton G; Carniel E Infect Immun; 1993 Jun; 61(6):2717-22. PubMed ID: 8500913 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]