These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 9818149)

  • 81. Yersiniabactin/pesticin receptor: a component of an iron uptake system of highly pathogenic Yersinia.
    Rakin A; Heesemann J
    Contrib Microbiol Immunol; 1995; 13():244-7. PubMed ID: 8833844
    [No Abstract]   [Full Text] [Related]  

  • 82. Kinetic and regiospecific interrogation of covalent intermediates in the nonribosomal peptide synthesis of yersiniabactin.
    McLoughlin SM; Kelleher NL
    J Am Chem Soc; 2004 Oct; 126(41):13265-75. PubMed ID: 15479080
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Molecular characterization of a novel siderophore-independent iron transport system in Yersinia.
    Saken E; Rakin A; Heesemann J
    Int J Med Microbiol; 2000 Mar; 290(1):51-60. PubMed ID: 11043981
    [TBL] [Abstract][Full Text] [Related]  

  • 84. The Yersinia high-pathogenicity island.
    Carniel E
    Int Microbiol; 1999 Sep; 2(3):161-7. PubMed ID: 10943409
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Siderophore-mediated strategies of iron acquisition by extraintestinal isolates of Enterobacter spp.
    Mokracka J; Kaznowski A; Szarata M; Kaczmarek E
    Acta Microbiol Pol; 2003; 52(1):81-6. PubMed ID: 12916730
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Genome-wide mutant fitness profiling identifies nutritional requirements for optimal growth of Yersinia pestis in deep tissue.
    Palace SG; Proulx MK; Lu S; Baker RE; Goguen JD
    mBio; 2014 Aug; 5(4):. PubMed ID: 25139902
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Identification and characterization of the hemophore-dependent heme acquisition system of Yersinia pestis.
    Rossi MS; Fetherston JD; Létoffé S; Carniel E; Perry RD; Ghigo JM
    Infect Immun; 2001 Nov; 69(11):6707-17. PubMed ID: 11598042
    [TBL] [Abstract][Full Text] [Related]  

  • 88. The Yersinia high pathogenicity island is present in Salmonella enterica Subspecies I isolated from turkeys.
    Petermann SR; Sherwood JS; Logue CM
    Microb Pathog; 2008 Aug; 45(2):110-4. PubMed ID: 18495411
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Biosynthesis of pyochelin and dihydroaeruginoic acid requires the iron-regulated pchDCBA operon in Pseudomonas aeruginosa.
    Serino L; Reimmann C; Visca P; Beyeler M; Chiesa VD; Haas D
    J Bacteriol; 1997 Jan; 179(1):248-57. PubMed ID: 8982005
    [TBL] [Abstract][Full Text] [Related]  

  • 90. The Yersinia high-pathogenicity island is highly predominant in virulence-associated phylogenetic groups of Escherichia coli.
    Clermont O; Bonacorsi S; Bingen E
    FEMS Microbiol Lett; 2001 Mar; 196(2):153-7. PubMed ID: 11267772
    [TBL] [Abstract][Full Text] [Related]  

  • 91. C-methyltransferase and cyclization domain activity at the intraprotein PK/NRP switch point of yersiniabactin synthetase.
    Miller DA; Walsh CT; Luo L
    J Am Chem Soc; 2001 Aug; 123(34):8434-5. PubMed ID: 11516308
    [No Abstract]   [Full Text] [Related]  

  • 92. Yersiniabactin is a quorum-sensing autoinducer and siderophore in uropathogenic
    Heffernan JR; Wildenthal JA; Tran H; Katumba GL; McCoy WH; Henderson JP
    mBio; 2024 Feb; 15(2):e0027723. PubMed ID: 38236035
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Crystal structure of Yersinia pestis virulence factor YfeA reveals two polyspecific metal-binding sites.
    Radka CD; DeLucas LJ; Wilson LS; Lawrenz MB; Perry RD; Aller SG
    Acta Crystallogr D Struct Biol; 2017 Jul; 73(Pt 7):557-572. PubMed ID: 28695856
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Structural organization of microcystin biosynthesis in Microcystis aeruginosa PCC7806: an integrated peptide-polyketide synthetase system.
    Tillett D; Dittmann E; Erhard M; von Döhren H; Börner T; Neilan BA
    Chem Biol; 2000 Oct; 7(10):753-64. PubMed ID: 11033079
    [TBL] [Abstract][Full Text] [Related]  

  • 95. The 102-kilobase unstable region of Yersinia pestis comprises a high-pathogenicity island linked to a pigmentation segment which undergoes internal rearrangement.
    Buchrieser C; Prentice M; Carniel E
    J Bacteriol; 1998 May; 180(9):2321-9. PubMed ID: 9573181
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Hierarchy of iron uptake systems: Yfu and Yiu are functional in Yersinia pestis.
    Kirillina O; Bobrov AG; Fetherston JD; Perry RD
    Infect Immun; 2006 Nov; 74(11):6171-8. PubMed ID: 16954402
    [TBL] [Abstract][Full Text] [Related]  

  • 97. The many faces of the YopM effector from plague causative bacterium Yersinia pestis and its implications for host immune modulation.
    Soundararajan V; Patel N; Subramanian V; Sasisekharan V; Sasisekharan R
    Innate Immun; 2011 Dec; 17(6):548-57. PubMed ID: 20699282
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Proteomic characterization of host response to Yersinia pestis and near neighbors.
    Chromy BA; Perkins J; Heidbrink JL; Gonzales AD; Murphy GA; Fitch JP; McCutchen-Maloney SL
    Biochem Biophys Res Commun; 2004 Jul; 320(2):474-9. PubMed ID: 15219853
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Metal selectivity by the virulence-associated yersiniabactin metallophore system.
    Koh EI; Hung CS; Parker KS; Crowley JR; Giblin DE; Henderson JP
    Metallomics; 2015 Jun; 7(6):1011-22. PubMed ID: 25824627
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Biochemical, structural and molecular dynamics analyses of the potential virulence factor RipA from Yersinia pestis.
    Torres R; Swift RV; Chim N; Wheatley N; Lan B; Atwood BR; Pujol C; Sankaran B; Bliska JB; Amaro RE; Goulding CW
    PLoS One; 2011; 6(9):e25084. PubMed ID: 21966419
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.