These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 9818188)

  • 1. Mechanistic imperatives for the evolution of glutathione transferases.
    Armstrong RN
    Curr Opin Chem Biol; 1998 Oct; 2(5):618-23. PubMed ID: 9818188
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elucidation of a monovalent cation dependence and characterization of the divalent cation binding site of the fosfomycin resistance protein (FosA).
    Bernat BA; Laughlin LT; Armstrong RN
    Biochemistry; 1999 Jun; 38(23):7462-9. PubMed ID: 10360943
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanistic imperative for the evolution of a metalloglutathione transferase of the vicinal oxygen chelate superfamily.
    Laughlin LT; Bernat BA; Armstrong RN
    Chem Biol Interact; 1998 Apr; 111-112():41-50. PubMed ID: 9679542
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fosfomycin resistance proteins: a nexus of glutathione transferases and epoxide hydrolases in a metalloenzyme superfamily.
    Rigsby RE; Fillgrove KL; Beihoffer LA; Armstrong RN
    Methods Enzymol; 2005; 401():367-79. PubMed ID: 16399398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional analysis of active site residues of the fosfomycin resistance enzyme FosA from Pseudomonas aeruginosa.
    Beharry Z; Palzkill T
    J Biol Chem; 2005 May; 280(18):17786-91. PubMed ID: 15741169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure, catalytic mechanism, and evolution of the glutathione transferases.
    Armstrong RN
    Chem Res Toxicol; 1997 Jan; 10(1):2-18. PubMed ID: 9074797
    [No Abstract]   [Full Text] [Related]  

  • 7. EPR study of substrate binding to the Mn(II) active site of the bacterial antibiotic resistance enzyme FosA: a better way to examine Mn(II).
    Smoukov SK; Telser J; Bernat BA; Rife CL; Armstrong RN; Hoffman BM
    J Am Chem Soc; 2002 Mar; 124(10):2318-26. PubMed ID: 11878987
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fosfomycin resistance protein (FosA) is a manganese metalloglutathione transferase related to glyoxalase I and the extradiol dioxygenases.
    Bernat BA; Laughlin LT; Armstrong RN
    Biochemistry; 1997 Mar; 36(11):3050-5. PubMed ID: 9115979
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanistic diversity of fosfomycin resistance in pathogenic microorganisms.
    Fillgrove KL; Pakhomova S; Newcomer ME; Armstrong RN
    J Am Chem Soc; 2003 Dec; 125(51):15730-1. PubMed ID: 14677948
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure of fosfomycin resistance protein FosA from transposon Tn2921.
    Pakhomova S; Rife CL; Armstrong RN; Newcomer ME
    Protein Sci; 2004 May; 13(5):1260-5. PubMed ID: 15075406
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure of a genomically encoded fosfomycin resistance protein (FosA) at 1.19 A resolution by MAD phasing off the L-III edge of Tl(+).
    Rife CL; Pharris RE; Newcomer ME; Armstrong RN
    J Am Chem Soc; 2002 Sep; 124(37):11001-3. PubMed ID: 12224946
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanistically diverse enzyme superfamilies: the importance of chemistry in the evolution of catalysis.
    Gerlt JA; Babbitt PC
    Curr Opin Chem Biol; 1998 Oct; 2(5):607-12. PubMed ID: 9818186
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphonoformate: a minimal transition state analogue inhibitor of the fosfomycin resistance protein, FosA.
    Rigsby RE; Rife CL; Fillgrove KL; Newcomer ME; Armstrong RN
    Biochemistry; 2004 Nov; 43(43):13666-73. PubMed ID: 15504029
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanistic diversity in a metalloenzyme superfamily.
    Armstrong RN
    Biochemistry; 2000 Nov; 39(45):13625-32. PubMed ID: 11076500
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The structure of a zeta class glutathione S-transferase from Arabidopsis thaliana: characterisation of a GST with novel active-site architecture and a putative role in tyrosine catabolism.
    Thom R; Dixon DP; Edwards R; Cole DJ; Lapthorn AJ
    J Mol Biol; 2001 May; 308(5):949-62. PubMed ID: 11352584
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduction of benzoquinones to hydroquinones via spontaneous reaction with glutathione and enzymatic reaction by S-glutathionyl-hydroquinone reductases.
    Lam LK; Zhang Z; Board PG; Xun L
    Biochemistry; 2012 Jun; 51(25):5014-21. PubMed ID: 22686328
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes.
    Deponte M
    Biochim Biophys Acta; 2013 May; 1830(5):3217-66. PubMed ID: 23036594
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for an induced-fit mechanism operating in pi class glutathione transferases.
    Oakley AJ; Lo Bello M; Ricci G; Federici G; Parker MW
    Biochemistry; 1998 Jul; 37(28):9912-7. PubMed ID: 9665696
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolution of the antibiotic resistance protein, FosA, is linked to a catalytically promiscuous progenitor.
    Brown DW; Schaab MR; Birmingham WR; Armstrong RN
    Biochemistry; 2009 Mar; 48(9):1847-9. PubMed ID: 19196010
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parallel evolutionary pathways for glutathione transferases: structure and mechanism of the mitochondrial class kappa enzyme rGSTK1-1.
    Ladner JE; Parsons JF; Rife CL; Gilliland GL; Armstrong RN
    Biochemistry; 2004 Jan; 43(2):352-61. PubMed ID: 14717589
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.