These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Characterization of heme-deficient neuronal nitric-oxide synthase reveals a role for heme in subunit dimerization and binding of the amino acid substrate and tetrahydrobiopterin. Klatt P; Pfeiffer S; List BM; Lehner D; Glatter O; Bächinger HP; Werner ER; Schmidt K; Mayer B J Biol Chem; 1996 Mar; 271(13):7336-42. PubMed ID: 8631754 [TBL] [Abstract][Full Text] [Related]
3. Structure of nitric oxide synthase oxygenase dimer with pterin and substrate. Crane BR; Arvai AS; Ghosh DK; Wu C; Getzoff ED; Stuehr DJ; Tainer JA Science; 1998 Mar; 279(5359):2121-6. PubMed ID: 9516116 [TBL] [Abstract][Full Text] [Related]
4. Brain nitric oxide synthase is a biopterin- and flavin-containing multi-functional oxido-reductase. Mayer B; John M; Heinzel B; Werner ER; Wachter H; Schultz G; Böhme E FEBS Lett; 1991 Aug; 288(1-2):187-91. PubMed ID: 1715290 [TBL] [Abstract][Full Text] [Related]
6. Reactions catalyzed by the heme domain of inducible nitric oxide synthase: evidence for the involvement of tetrahydrobiopterin in electron transfer. Hurshman AR; Marletta MA Biochemistry; 2002 Mar; 41(10):3439-56. PubMed ID: 11876653 [TBL] [Abstract][Full Text] [Related]
7. Structures of the N(omega)-hydroxy-L-arginine complex of inducible nitric oxide synthase oxygenase dimer with active and inactive pterins. Crane BR; Arvai AS; Ghosh S; Getzoff ED; Stuehr DJ; Tainer JA Biochemistry; 2000 Apr; 39(16):4608-21. PubMed ID: 10769116 [TBL] [Abstract][Full Text] [Related]
8. A tryptophan that modulates tetrahydrobiopterin-dependent electron transfer in nitric oxide synthase regulates enzyme catalysis by additional mechanisms. Wang ZQ; Wei CC; Santolini J; Panda K; Wang Q; Stuehr DJ Biochemistry; 2005 Mar; 44(12):4676-90. PubMed ID: 15779894 [TBL] [Abstract][Full Text] [Related]
9. Reactivity of the flavin semiquinone of nitric oxide synthase in the oxygenation of arginine to NG-hydroxyarginine, the first step of nitric oxide synthesis. Witteveen CF; Giovanelli J; Yim MB; Gachhui R; Stuehr DJ; Kaufman S Biochem Biophys Res Commun; 1998 Sep; 250(1):36-42. PubMed ID: 9735327 [TBL] [Abstract][Full Text] [Related]
10. Rapid kinetic studies link tetrahydrobiopterin radical formation to heme-dioxy reduction and arginine hydroxylation in inducible nitric-oxide synthase. Wei CC; Wang ZQ; Wang Q; Meade AL; Hemann C; Hille R; Stuehr DJ J Biol Chem; 2001 Jan; 276(1):315-9. PubMed ID: 11020389 [TBL] [Abstract][Full Text] [Related]
11. Determination of nitric oxide synthase cofactors: heme, FAD, FMN, and tetrahydrobiopterin. Klatt P; Schmidt K; Werner ER; Mayer B Methods Enzymol; 1996; 268():358-65. PubMed ID: 8782602 [No Abstract] [Full Text] [Related]
12. Characterization of C415 mutants of neuronal nitric oxide synthase. Richards MK; Clague MJ; Marletta MA Biochemistry; 1996 Jun; 35(24):7772-80. PubMed ID: 8672477 [TBL] [Abstract][Full Text] [Related]
13. Nitric oxide-induced autoinhibition of neuronal nitric oxide synthase in the presence of the autoxidation-resistant pteridine 5-methyltetrahydrobiopterin. Gorren AC; Schrammel A; Riethmüller C; Schmidt K; Koesling D; Werner ER; Mayer B Biochem J; 2000 Apr; 347(Pt 2):475-84. PubMed ID: 10749677 [TBL] [Abstract][Full Text] [Related]
14. A bacterial nitric oxide synthase from a Nocardia species. Chen Y; Rosazza JP Biochem Biophys Res Commun; 1994 Sep; 203(2):1251-8. PubMed ID: 7522444 [TBL] [Abstract][Full Text] [Related]
15. Delineation of the arginine- and tetrahydrobiopterin-binding sites of neuronal nitric oxide synthase. Boyhan A; Smith D; Charles IG; Saqi M; Lowe PN Biochem J; 1997 Apr; 323 ( Pt 1)(Pt 1):131-9. PubMed ID: 9173872 [TBL] [Abstract][Full Text] [Related]
16. Exploring the redox reactions between heme and tetrahydrobiopterin in the nitric oxide synthases. Stuehr DJ; Wei CC; Wang Z; Hille R Dalton Trans; 2005 Nov; (21):3427-35. PubMed ID: 16234921 [TBL] [Abstract][Full Text] [Related]
17. A tetrahydrobiopterin radical forms and then becomes reduced during Nomega-hydroxyarginine oxidation by nitric-oxide synthase. Wei CC; Wang ZQ; Hemann C; Hille R; Stuehr DJ J Biol Chem; 2003 Nov; 278(47):46668-73. PubMed ID: 14504282 [TBL] [Abstract][Full Text] [Related]
18. Ability of tetrahydrobiopterin analogues to support catalysis by inducible nitric oxide synthase: formation of a pterin radical is required for enzyme activity. Hurshman AR; Krebs C; Edmondson DE; Marletta MA Biochemistry; 2003 Nov; 42(45):13287-303. PubMed ID: 14609340 [TBL] [Abstract][Full Text] [Related]
19. Comparative functioning of dihydro- and tetrahydropterins in supporting electron transfer, catalysis, and subunit dimerization in inducible nitric oxide synthase. Presta A; Siddhanta U; Wu C; Sennequier N; Huang L; Abu-Soud HM; Erzurum S; Stuehr DJ Biochemistry; 1998 Jan; 37(1):298-310. PubMed ID: 9425051 [TBL] [Abstract][Full Text] [Related]
20. Nitric oxide synthase-catalyzed activation of oxygen and reduction of cytochromes: reaction mechanisms and possible physiological implications. Mayer B; Heinzel B; Klatt P; John M; Schmidt K; Böhme E J Cardiovasc Pharmacol; 1992; 20 Suppl 12():S54-6. PubMed ID: 1282986 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]