These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 9818312)

  • 1. Magnetic relaxation contrast agents in magnetization transfer imaging.
    Danek AN; Bryant RG
    Invest Radiol; 1998 Nov; 33(11):773-8. PubMed ID: 9818312
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Off-resonance experiments and contrast agents to improve magnetic resonance imaging.
    Bertini I; Luchinat C; Parigi G; Quacquarini G; Marzola P; Cavagna FM
    Magn Reson Med; 1998 Jan; 39(1):124-31. PubMed ID: 9438446
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Gd-DTPA-BMA on magnetization transfer: application to rapid imaging of cardiac ischemia.
    Jones RA; Haraldseth O; Schjøtt J; Brurok H; Jynge P; Oksendal AN; Rinck PA
    J Magn Reson Imaging; 1993; 3(1):31-9. PubMed ID: 8428099
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamics of paramagnetic agents by off-resonance rotating frame technique in the presence of magnetization transfer effect.
    Zhang H; Xie Y
    J Magn Reson; 2007 Feb; 184(2):275-91. PubMed ID: 17123851
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magnetically coupled paramagnetic relaxation agents.
    Lester CC; Bryant RG
    Magn Reson Med; 1992 Apr; 24(2):236-42. PubMed ID: 1314929
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Magnetization transfer, cross-relaxation, and chemical exchange in rotationally immobilized protein gels.
    Zhou D; Bryant RG
    Magn Reson Med; 1994 Dec; 32(6):725-32. PubMed ID: 7869894
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cross-linked, degradable starch microspheres as carriers of paramagnetic contrast agents for magnetic resonance imaging: synthesis, degradation, and relaxation properties.
    Rongved P; Lindberg B; Klaveness J
    Carbohydr Res; 1991 Jul; 214(2):325-30. PubMed ID: 1769024
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Concepts of myocardial perfusion imaging in magnetic resonance imaging.
    Wilke N; Jerosch-Herold M; Stillman AE; Kroll K; Tsekos N; Merkle H; Parrish T; Hu X; Wang Y; Bassingthwaighte J
    Magn Reson Q; 1994 Dec; 10(4):249-86. PubMed ID: 7873354
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of Gd-DTPA and fast gradient-echo and spin-echo MR imaging to demonstrate renal function in the rabbit.
    Carvlin MJ; Arger PH; Kundel HL; Axel L; Dougherty L; Kassab EA; Moore B
    Radiology; 1989 Mar; 170(3 Pt 1):705-11. PubMed ID: 2916024
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Water diffusion-exchange effect on the paramagnetic relaxation enhancement in off-resonance rotating frame.
    Zhang H; Xie Y; Ji T
    J Magn Reson; 2007 Jun; 186(2):259-72. PubMed ID: 17412624
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interactions of paramagnetic contrast agents and the spin echo pulse sequence.
    Davis PL; Parker DL; Nelson JA; Gillen JS; Runge VM
    Invest Radiol; 1988 May; 23(5):381-8. PubMed ID: 3384619
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurement of spin-lattice relaxation times with FLASH for dynamic MRI of the breast.
    Brookes JA; Redpath TW; Gilbert FJ; Needham G; Murray AD
    Br J Radiol; 1996 Mar; 69(819):206-14. PubMed ID: 8800863
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gd-DTPA-enhanced short repetition time and short inversion time inversion recovery magnetic resonance imaging. Experimental and clinical assessment.
    Mihara F; Gupta KL
    Invest Radiol; 1991 Aug; 26(8):734-41. PubMed ID: 1917409
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetization transfer contrast in Gd-DTPA-enhanced imaging of brain tumors.
    Niemi P; Kurki T; Lundbom N; Kormano M
    Invest Radiol; 1991 Nov; 26 Suppl 1():S248-9; discussion S253-4. PubMed ID: 1808140
    [No Abstract]   [Full Text] [Related]  

  • 15. Albumin labeled with Gd-DTPA. An intravascular contrast-enhancing agent for magnetic resonance blood pool imaging: preparation and characterization.
    Ogan MD; Schmiedl U; Moseley ME; Grodd W; Paajanen H; Brasch RC
    Invest Radiol; 1987 Aug; 22(8):665-71. PubMed ID: 3667174
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-Molecular-Weight Iron Chelates May Be an Alternative to Gadolinium-based Contrast Agents for T1-weighted Contrast-enhanced MR Imaging.
    Boehm-Sturm P; Haeckel A; Hauptmann R; Mueller S; Kuhl CK; Schellenberger EA
    Radiology; 2018 Feb; 286(2):537-546. PubMed ID: 28880786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of viable and nonviable myocardium at MR imaging: comparison of gadolinium-based extracellular and blood pool contrast materials versus manganese-based contrast materials in a rat myocardial infarction model.
    Flacke S; Allen JS; Chia JM; Wible JH; Periasamy MP; Adams MD; Adzamli IK; Lorenz CH
    Radiology; 2003 Mar; 226(3):731-8. PubMed ID: 12601183
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamics of paramagnetic agents by off-resonance rotating frame technique.
    Zhang H; Xie Y
    J Magn Reson; 2006 Dec; 183(2):213-27. PubMed ID: 16979920
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Magnetic resonance tomography of adrenal gland tumors. Detection and differentiation using fast gradient echo sequences and dynamic contrast media studies].
    Krestin GP; Lorenz R; Steinbrich W
    Radiologe; 1990 May; 30(5):228-34. PubMed ID: 2356308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MR imaging of the breast. Imaging and tissue characterization without intravenous contrast.
    Santyr GE
    Magn Reson Imaging Clin N Am; 1994 Nov; 2(4):673-90. PubMed ID: 7489316
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.