BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

361 related articles for article (PubMed ID: 9818720)

  • 1. Highly efficient assimilation of lactose by a metabolically engineered strain of Saccharomyces cerevisiae.
    Rubio-Texeira M; Castrillo JI; Adam AC; Ugalde UO; Polaina J
    Yeast; 1998 Jun; 14(9):827-37. PubMed ID: 9818720
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Construction of strains of Saccharomyces cerevisiae that grow on lactose.
    Sreekrishna K; Dickson RC
    Proc Natl Acad Sci U S A; 1985 Dec; 82(23):7909-13. PubMed ID: 3934664
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lactose utilization by Saccharomyces cerevisiae strains expressing Kluyveromyces lactis LAC genes.
    Rubio-Texeira M; Arévalo-Rodríguez M; Lequerica JL; Polaina J
    J Biotechnol; 2001 Nov; 84(2):97-106. PubMed ID: 11090681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineered autolytic yeast strains secreting Kluyveromyces lactis beta-galactosidase for production of heterologous proteins in lactose media.
    Becerra M; Rodríguez-Belmonte E; Esperanza Cerdán M; González Siso MI
    J Biotechnol; 2004 Apr; 109(1-2):131-7. PubMed ID: 15063621
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetics of lactose fermentation using a recombinant Saccharomyces cerevisiae strain.
    Jurascík M; Guimarães P; Klein J; Domingues L; Teixeira J; Markos J
    Biotechnol Bioeng; 2006 Aug; 94(6):1147-54. PubMed ID: 16615146
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Genetic and molecular study of inability of the yeast Kluyveromyces lactis var drosophilarum to ferment lactose].
    Naumov GI; Naumova ES; Barrio E; Querol A
    Mikrobiologiia; 2006; 75(3):299-304. PubMed ID: 16871794
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Endless versatility in the biotechnological applications of Kluyveromyces LAC genes.
    Rubio-Texeira M
    Biotechnol Adv; 2006; 24(2):212-25. PubMed ID: 16289464
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptive evolution of a lactose-consuming Saccharomyces cerevisiae recombinant.
    Guimarães PM; François J; Parrou JL; Teixeira JA; Domingues L
    Appl Environ Microbiol; 2008 Mar; 74(6):1748-56. PubMed ID: 18245248
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [The cloning and expression of the gene for beta-galactosidase from Candida pseudotropicalis yeasts in Saccharomyces cerevisiae cells].
    Tretiak KA; Zakal'skiĭ AE; Gudz' SP
    Mikrobiol Z; 1998; 60(4):57-66. PubMed ID: 9859642
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation and characterization of mutants of Kluyveromyces lactis defective in lactose transport.
    Riley MI; Sreekrishna K; Bhairi S; Dickson RC
    Mol Gen Genet; 1987 Jun; 208(1-2):145-51. PubMed ID: 3039304
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The high fermentative metabolism of Kluyveromyces marxianus UFV-3 relies on the increased expression of key lactose metabolic enzymes.
    Diniz RH; Silveira WB; Fietto LG; Passos FM
    Antonie Van Leeuwenhoek; 2012 Mar; 101(3):541-50. PubMed ID: 22068918
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A recombinant Saccharomyces cerevisiae strain for efficient conversion of lactose in salted and unsalted cheese whey into ethanol.
    Tahoun MK; el-Nemr TM; Shata OH
    Nahrung; 2002 Oct; 46(5):321-6. PubMed ID: 12428446
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coregulation of the Kluyveromyces lactis lactose permease and beta-galactosidase genes is achieved by interaction of multiple LAC9 binding sites in a 2.6 kbp divergent promoter.
    Gödecke A; Zachariae W; Arvanitidis A; Breunig KD
    Nucleic Acids Res; 1991 Oct; 19(19):5351-8. PubMed ID: 1923819
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lactose-induced cell death of beta-galactosidase mutants in Kluyveromyces lactis.
    Lodi T; Donnini C
    FEMS Yeast Res; 2005 May; 5(8):727-34. PubMed ID: 15851101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Beta-galactosidase activity of strains of Kluyveromyces spp. and production of ethanol from lactose].
    de Figueroa LC; Heluane H; Rintoul M; Córdoba PR
    Rev Argent Microbiol; 1990; 22(4):175-81. PubMed ID: 2129474
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Construction of a lactose-assimilating strain of baker's yeast.
    Adam AC; Prieto JA; Rubio-Texeira M; Polaina J
    Yeast; 1999 Sep; 15(13):1299-305. PubMed ID: 10509012
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polymorphisms in the LAC12 gene explain lactose utilisation variability in Kluyveromyces marxianus strains.
    Varela JA; Montini N; Scully D; Van der Ploeg R; Oreb M; Boles E; Hirota J; Akada R; Hoshida H; Morrissey JP
    FEMS Yeast Res; 2017 May; 17(3):. PubMed ID: 28444380
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of a gratuitous induction system in Kluyveromyces lactis for the expression of intracellular and secreted proteins during fed-batch culture.
    Panuwatsuk W; Da Silva NA
    Biotechnol Bioeng; 2003 Mar; 81(6):712-8. PubMed ID: 12529885
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Construction of a flocculent Saccharomyces cerevisiae fermenting lactose.
    Domingues L; Teixeira JA; Lima N
    Appl Microbiol Biotechnol; 1999 May; 51(5):621-6. PubMed ID: 10390820
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Co-expression of a cellobiose phosphorylase and lactose permease enables intracellular cellobiose utilisation by Saccharomyces cerevisiae.
    Sadie CJ; Rose SH; den Haan R; van Zyl WH
    Appl Microbiol Biotechnol; 2011 May; 90(4):1373-80. PubMed ID: 21336923
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.