These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 9818743)
1. Response of single species biofilms and microcosm dental plaques to pulsing with chlorhexidine. Pratten J; Smith AW; Wilson M J Antimicrob Chemother; 1998 Oct; 42(4):453-9. PubMed ID: 9818743 [TBL] [Abstract][Full Text] [Related]
2. Antimicrobial susceptibility and composition of microcosm dental plaques supplemented with sucrose. Pratten J; Wilson M Antimicrob Agents Chemother; 1999 Jul; 43(7):1595-9. PubMed ID: 10390209 [TBL] [Abstract][Full Text] [Related]
3. In vitro studies of the effect of antiseptic-containing mouthwashes on the formation and viability of Streptococcus sanguis biofilms. Pratten J; Wills K; Barnett P; Wilson M J Appl Microbiol; 1998 Jun; 84(6):1149-55. PubMed ID: 9717301 [TBL] [Abstract][Full Text] [Related]
4. Effect of xylitol/chlorhexidine versus xylitol or chlorhexidine as single rinses on initial biofilm formation of cariogenic streptococci. Decker EM; Maier G; Axmann D; Brecx M; von Ohle C Quintessence Int; 2008 Jan; 39(1):17-22. PubMed ID: 18551212 [TBL] [Abstract][Full Text] [Related]
5. An in vitro dynamic microcosm biofilm model for caries lesion development and antimicrobial dose-response studies. Maske TT; Brauner KV; Nakanishi L; Arthur RA; van de Sande FH; Cenci MS Biofouling; 2016; 32(3):339-48. PubMed ID: 26905384 [TBL] [Abstract][Full Text] [Related]
6. A laboratory model biofilm fermenter: design and initial trial on a single species biofilm. Wirthlin MR; Chen PK; Hoover CI J Periodontol; 2005 Sep; 76(9):1443-9. PubMed ID: 16171430 [TBL] [Abstract][Full Text] [Related]
7. Analysis of the antimicrobial and anti-caries effects of TiF4 varnish under microcosm biofilm formed on enamel. Souza BM; Fernandes Neto C; Salomão PMA; Vasconcelos LRSM; Andrade FB; Magalhães AC J Appl Oral Sci; 2018; 26():e20170304. PubMed ID: 29489933 [TBL] [Abstract][Full Text] [Related]
8. Susceptibility of biofilms of Streptococcus sanguis to chlorhexidine gluconate and cetylpyridinium chloride. Wilson M; Patel H; Fletcher J Oral Microbiol Immunol; 1996 Jun; 11(3):188-92. PubMed ID: 8941774 [TBL] [Abstract][Full Text] [Related]
9. Early biofilm formation and the effects of antimicrobial agents on orthodontic bonding materials in a parallel plate flow chamber. Chin MY; Busscher HJ; Evans R; Noar J; Pratten J Eur J Orthod; 2006 Feb; 28(1):1-7. PubMed ID: 16373451 [TBL] [Abstract][Full Text] [Related]
10. Red fluorescence of dental biofilm as an indicator for assessing the efficacy of antimicrobials. Lee ES; de Josselin de Jong E; Jung HI; Kim BI J Biomed Opt; 2018 Jan; 23(1):1-6. PubMed ID: 29318813 [TBL] [Abstract][Full Text] [Related]
11. Microcosm biofilms originating from children with different caries experience have similar cariogenicity under successive sucrose challenges. Azevedo MS; van de Sande FH; Romano AR; Cenci MS Caries Res; 2011; 45(6):510-7. PubMed ID: 21967836 [TBL] [Abstract][Full Text] [Related]
12. In vitro effect of chlorhexidine mouth rinses on polyspecies biofilms. Guggenheim B; Meier A Schweiz Monatsschr Zahnmed; 2011; 121(5):432-41. PubMed ID: 21656386 [TBL] [Abstract][Full Text] [Related]
13. Susceptibility of planktonic versus attached Streptococcus sanguinis cells to chlorhexidine. Decker EM; Weiger R; von Ohle C; Wiech I; Brecx M Clin Oral Investig; 2003 Jun; 7(2):98-102. PubMed ID: 12709846 [TBL] [Abstract][Full Text] [Related]
14. Modelling oral malodour in a longitudinal study. Pratten J; Pasu M; Jackson G; Flanagan A; Wilson M Arch Oral Biol; 2003 Nov; 48(11):737-43. PubMed ID: 14550375 [TBL] [Abstract][Full Text] [Related]
15. Effect of conventional mouthrinses on initial bioadhesion to enamel and dentin in situ. Hannig C; Gaeding A; Basche S; Richter G; Helbig R; Hannig M Caries Res; 2013; 47(2):150-61. PubMed ID: 23207875 [TBL] [Abstract][Full Text] [Related]
16. A synergistic chlorhexidine/chitosan combination for improved antiplaque strategies. Decker EM; von Ohle C; Weiger R; Wiech I; Brecx M J Periodontal Res; 2005 Oct; 40(5):373-7. PubMed ID: 16105089 [TBL] [Abstract][Full Text] [Related]
17. In vitro oral biofilm formation on triclosan-coated sutures in the absence and presence of additional antiplaque treatment. Venema S; Abbas F; van de Belt-Gritter B; van der Mei HC; Busscher HJ; van Hoogmoed CG J Oral Maxillofac Surg; 2011 Apr; 69(4):980-5. PubMed ID: 20674122 [TBL] [Abstract][Full Text] [Related]
18. A method to study sustained antimicrobial activity of rinse and dentifrice components on biofilm viability in vivo. van der Mei HC; White DJ; Atema-Smit J; van de Belt-Gritter E; Busscher HJ J Clin Periodontol; 2006 Jan; 33(1):14-20. PubMed ID: 16367850 [TBL] [Abstract][Full Text] [Related]
19. Composition and antibiotic resistance profile of microcosm dental plaques before and after exposure to tetracycline. Ready D; Roberts AP; Pratten J; Spratt DA; Wilson M; Mullany P J Antimicrob Chemother; 2002 May; 49(5):769-75. PubMed ID: 12003970 [TBL] [Abstract][Full Text] [Related]
20. Antibiofilm and anti-caries effects of an experimental mouth rinse containing Matricaria chamomilla L. extract under microcosm biofilm on enamel. Braga AS; Simas LLM; Pires JG; Souza BM; de Melo FPSR; Saldanha LL; Dokkedal AL; Magalhães AC J Dent; 2020 Aug; 99():103415. PubMed ID: 32592827 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]