These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 9818746)
1. Inhibitors of branched-chain amino acid biosynthesis as potential antituberculosis agents. Grandoni JA; Marta PT; Schloss JV J Antimicrob Chemother; 1998 Oct; 42(4):475-82. PubMed ID: 9818746 [TBL] [Abstract][Full Text] [Related]
2. Branched-chain amino acid biosynthesis inhibitors: herbicide efficacy is associated with an induced carbon-nitrogen imbalance. Zabalza A; Zulet A; Gil-Monreal M; Igal M; Royuela M J Plant Physiol; 2013 Jun; 170(9):814-21. PubMed ID: 23394788 [TBL] [Abstract][Full Text] [Related]
3. Crystal structure of Mycobacterium tuberculosis ketol-acid reductoisomerase at 1.0 Å resolution - a potential target for anti-tuberculosis drug discovery. Lv Y; Kandale A; Wun SJ; McGeary RP; Williams SJ; Kobe B; Sieber V; Schembri MA; Schenk G; Guddat LW FEBS J; 2016 Apr; 283(7):1184-96. PubMed ID: 26876563 [TBL] [Abstract][Full Text] [Related]
4. Metabolic effects of inhibitors of two enzymes of the branched-chain amino acid pathway in Salmonella typhimurium. Epelbaum S; Chipman DM; Barak Z J Bacteriol; 1996 Feb; 178(4):1187-96. PubMed ID: 8576056 [TBL] [Abstract][Full Text] [Related]
5. In vitro and ex vivo activity of new derivatives of acetohydroxyacid synthase inhibitors against Mycobacterium tuberculosis and non-tuberculous mycobacteria. Sohn H; Lee KS; Ko YK; Ryu JW; Woo JC; Koo DW; Shin SJ; Ahn SJ; Shin AR; Song CH; Jo EK; Park JK; Kim HJ Int J Antimicrob Agents; 2008 Jun; 31(6):567-71. PubMed ID: 18337064 [TBL] [Abstract][Full Text] [Related]
6. Discovery and evaluation of novel Mycobacterium tuberculosis ketol-acid reductoisomerase inhibitors as therapeutic drug leads. Krishna VS; Zheng S; Rekha EM; Guddat LW; Sriram D J Comput Aided Mol Des; 2019 Mar; 33(3):357-366. PubMed ID: 30666485 [TBL] [Abstract][Full Text] [Related]
7. Fermentative metabolism is induced by inhibiting different enzymes of the branched-chain amino acid biosynthesis pathway in pea plants. Zabalza A; González EM; Arrese-Igor C; Royuela M J Agric Food Chem; 2005 Sep; 53(19):7486-93. PubMed ID: 16159177 [TBL] [Abstract][Full Text] [Related]
8. Analogues of the Herbicide, Kandale A; Patel K; Hussein WM; Wun SJ; Zheng S; Tan L; West NP; Schenk G; Guddat LW; McGeary RP J Med Chem; 2021 Feb; 64(3):1670-1684. PubMed ID: 33512163 [TBL] [Abstract][Full Text] [Related]
9. Discovery of a Pyrimidinedione Derivative with Potent Inhibitory Activity against Mycobacterium tuberculosis Ketol-Acid Reductoisomerase. Lin X; Kurz JL; Patel KM; Wun SJ; Hussein WM; Lonhienne T; West NP; McGeary RP; Schenk G; Guddat LW Chemistry; 2021 Feb; 27(9):3130-3141. PubMed ID: 33215746 [TBL] [Abstract][Full Text] [Related]
10. Discovery of novel acetohydroxyacid synthase inhibitors as active agents against Mycobacterium tuberculosis by virtual screening and bioassay. Wang D; Zhu X; Cui C; Dong M; Jiang H; Li Z; Liu Z; Zhu W; Wang JG J Chem Inf Model; 2013 Feb; 53(2):343-53. PubMed ID: 23316686 [TBL] [Abstract][Full Text] [Related]
11. Development of potent chemical antituberculosis agents targeting Mycobacterium tuberculosis acetohydroxyacid synthase. Jung IP; Ha NR; Lee SC; Ryoo SW; Yoon MY Int J Antimicrob Agents; 2016 Sep; 48(3):247-58. PubMed ID: 27451857 [TBL] [Abstract][Full Text] [Related]
12. Synthesis, crystal structure and biological evaluation of substituted quinazolinone benzoates as novel antituberculosis agents targeting acetohydroxyacid synthase. Lu W; Baig IA; Sun HJ; Cui CJ; Guo R; Jung IP; Wang D; Dong M; Yoon MY; Wang JG Eur J Med Chem; 2015 Apr; 94():298-305. PubMed ID: 25771108 [TBL] [Abstract][Full Text] [Related]
13. Design and development of ((4-methoxyphenyl)carbamoyl) (5-(5-nitrothiophen-2-yl)-1,3,4-thiadiazol-2-yl)amide analogues as Mycobacterium tuberculosis ketol-acid reductoisomerase inhibitors. Krishna VS; Zheng S; Rekha EM; Nallangi R; Sai Prasad DV; George SE; Guddat LW; Sriram D Eur J Med Chem; 2020 May; 193():112178. PubMed ID: 32171154 [TBL] [Abstract][Full Text] [Related]
14. Role of exogenously supplied ferulic and p-coumaric acids in mimicking the mode of action of acetolactate synthase inhibiting herbicides. Orcaray L; Igal M; Zabalza A; Royuela M J Agric Food Chem; 2011 Sep; 59(18):10162-8. PubMed ID: 21870840 [TBL] [Abstract][Full Text] [Related]
15. In vitro activities of the newly synthesised ER-2 against clinical isolates of Mycobacterium tuberculosis susceptible or resistant to antituberculosis drugs. Rao SS; Raghunathan R; Ekambaram R; Raghunathan M Int J Antimicrob Agents; 2009 Nov; 34(5):451-3. PubMed ID: 19625168 [TBL] [Abstract][Full Text] [Related]
16. Mechanism and Inhibitor Exploration with Binuclear Mg Ketol-Acid Reductoisomerase: Targeting the Biosynthetic Pathway of Branched-Chain Amino Acids. Yu MJ; Wu J; Chen SL Chembiochem; 2020 Feb; 21(3):381-391. PubMed ID: 31309701 [TBL] [Abstract][Full Text] [Related]
17. In vitro and in vivo activities of a new lead compound I2906 against Mycobacterium tuberculosis. Lu J; Yue J; Wu J; Luo R; Hu Z; Li J; Bai Y; Tang Z; Xian Q; Zhang X; Wang H Pharmacology; 2010; 85(6):365-71. PubMed ID: 20530976 [TBL] [Abstract][Full Text] [Related]
18. Therapy of multidrug-resistant tuberculosis: lessons from studies with mice. Klemens SP; DeStefano MS; Cynamon MH Antimicrob Agents Chemother; 1993 Nov; 37(11):2344-7. PubMed ID: 8285617 [TBL] [Abstract][Full Text] [Related]
19. Development of ssDNA aptamers as potent inhibitors of Mycobacterium tuberculosis acetohydroxyacid synthase. Baig IA; Moon JY; Lee SC; Ryoo SW; Yoon MY Biochim Biophys Acta; 2015 Oct; 1854(10 Pt A):1338-50. PubMed ID: 25988243 [TBL] [Abstract][Full Text] [Related]
20. Bacterial acetohydroxyacid synthase and its inhibitors--a summary of their structure, biological activity and current status. Gedi V; Yoon MY FEBS J; 2012 Mar; 279(6):946-63. PubMed ID: 22284339 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]