These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 9818746)
21. Growth inhibition of pathogenic bacteria by sulfonylurea herbicides. Kreisberg JF; Ong NT; Krishna A; Joseph TL; Wang J; Ong C; Ooi HA; Sung JC; Siew CC; Chang GC; Biot F; Cuccui J; Wren BW; Chan J; Sivalingam SP; Zhang LH; Verma C; Tan P Antimicrob Agents Chemother; 2013 Mar; 57(3):1513-7. PubMed ID: 23263008 [TBL] [Abstract][Full Text] [Related]
22. Sulfometuron methyl-sensitive and -resistant acetolactate synthases of the archaebacteria Methanococcus spp. Xing RY; Whitman WB J Bacteriol; 1987 Oct; 169(10):4486-92. PubMed ID: 3654579 [TBL] [Abstract][Full Text] [Related]
23. Inactivation of the ilvB1 gene in Mycobacterium tuberculosis leads to branched-chain amino acid auxotrophy and attenuation of virulence in mice. Awasthy D; Gaonkar S; Shandil RK; Yadav R; Bharath S; Marcel N; Subbulakshmi V; Sharma U Microbiology (Reading); 2009 Sep; 155(Pt 9):2978-2987. PubMed ID: 19542000 [TBL] [Abstract][Full Text] [Related]
24. Mechanisms of bacterial acetohydroxyacid synthase (AHAS) and specific inhibitors of Mycobacterium tuberculosis AHAS as potential drug candidates against tuberculosis. Gokhale K; Tilak B Curr Drug Targets; 2015; 16(7):689-99. PubMed ID: 25882218 [TBL] [Abstract][Full Text] [Related]
25. Nitrogen assimilation studies using 15N in soybean plants treated with imazethapyr, an inhibitor of branched-chain amino acid biosynthesis. Zabalza A; Gaston S; Ribas-Carbó M; Orcaray L; Igal M; Royuela M J Agric Food Chem; 2006 Nov; 54(23):8818-23. PubMed ID: 17090128 [TBL] [Abstract][Full Text] [Related]
26. Characterization of acetohydroxyacid synthase from Mycobacterium tuberculosis and the identification of its new inhibitor from the screening of a chemical library. Choi KJ; Yu YG; Hahn HG; Choi JD; Yoon MY FEBS Lett; 2005 Aug; 579(21):4903-10. PubMed ID: 16111681 [TBL] [Abstract][Full Text] [Related]
27. Changes in mitochondrial electron partitioning in response to herbicides inhibiting branched-chain amino acid biosynthesis in soybean. Gaston S; Ribas-Carbo M; Busquets S; Berry JA; Zabalza A; Royuela M Plant Physiol; 2003 Nov; 133(3):1351-9. PubMed ID: 14576285 [TBL] [Abstract][Full Text] [Related]
29. Acetohydroxyacid synthase from Mycobacterium avium and its inhibition by sulfonylureas and imidazolinones. Zohar Y; Einav M; Chipman DM; Barak Z Biochim Biophys Acta; 2003 Jun; 1649(1):97-105. PubMed ID: 12818195 [TBL] [Abstract][Full Text] [Related]
30. Rapid determination of growth inhibition of Mycobacterium tuberculosis by GC-MS/MS quantitation of tuberculostearic acid. Cai G; Pauli GF; Wang Y; Jaki BU; Franzblau SG Tuberculosis (Edinb); 2013 May; 93(3):322-9. PubMed ID: 23454100 [TBL] [Abstract][Full Text] [Related]
31. Mycobacterium tuberculosis ketol-acid reductoisomerase down-regulation affects its ability to persist, and its survival in macrophages and in mice. Singh N; Chauhan A; Kumar R; Singh SK Microbes Infect; 2022; 24(8):105000. PubMed ID: 36354071 [TBL] [Abstract][Full Text] [Related]
33. The potential of azole antifungals against latent/persistent tuberculosis. Ahmad Z; Sharma S; Khuller GK FEMS Microbiol Lett; 2006 May; 258(2):200-3. PubMed ID: 16640573 [TBL] [Abstract][Full Text] [Related]
34. Antimycobacterial activity of UDP-galactopyranose mutase inhibitors. Borrelli S; Zandberg WF; Mohan S; Ko M; Martinez-Gutierrez F; Partha SK; Sanders DA; Av-Gay Y; Pinto BM Int J Antimicrob Agents; 2010 Oct; 36(4):364-8. PubMed ID: 20678902 [TBL] [Abstract][Full Text] [Related]
35. Inhibition studies of ketol-acid reductoisomerases from pathogenic microorganisms. Wun SJ; Johnson LA; You L; McGeary RP; Brueck T; Schenk G; Guddat LW Arch Biochem Biophys; 2020 Oct; 692():108516. PubMed ID: 32745463 [TBL] [Abstract][Full Text] [Related]
36. Biological evaluation of novel substituted chloroquinolines targeting mycobacterial ATP synthase. Khan SR; Singh S; Roy KK; Akhtar MS; Saxena AK; Krishnan MY Int J Antimicrob Agents; 2013 Jan; 41(1):41-6. PubMed ID: 23141113 [TBL] [Abstract][Full Text] [Related]
37. Glutamate Racemase Is the Primary Target of β-Chloro-d-Alanine in Mycobacterium tuberculosis. Prosser GA; Rodenburg A; Khoury H; de Chiara C; Howell S; Snijders AP; de Carvalho LP Antimicrob Agents Chemother; 2016 Oct; 60(10):6091-9. PubMed ID: 27480853 [TBL] [Abstract][Full Text] [Related]
38. Evaluation of the in vitro and intracellular efficacy of new monosubstituted sulfonylureas against extensively drug-resistant tuberculosis. Wang D; Pan L; Cao G; Lei H; Meng X; He J; Dong M; Li Z; Liu Z Int J Antimicrob Agents; 2012 Nov; 40(5):463-6. PubMed ID: 22867883 [TBL] [Abstract][Full Text] [Related]
39. High throughput receptor-based virtual screening under ZINC database, synthesis, and biological evaluation of ketol-acid reductoisomerase inhibitors. Liu XH; Chen PQ; Wang BL; Dong WL; Li YH; Xie XQ; Li ZM Chem Biol Drug Des; 2010 Feb; 75(2):228-32. PubMed ID: 20028400 [TBL] [Abstract][Full Text] [Related]
40. Design, synthesis and characterization of dual inhibitors against new targets FabG4 and HtdX of Mycobacterium tuberculosis. Banerjee DR; Biswas R; Das AK; Basak A Eur J Med Chem; 2015 Jul; 100():223-34. PubMed ID: 26092447 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]