These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 9818746)

  • 81. Double Proton Transfer during a Novel Tertiary α-Ketol Rearrangement in Ketol-Acid Reductoisomerase: A Water-Mediated, Metal-Catalyzed, Base-Induced Mechanism.
    Zhuang YC; Ye DS; Weng SU; Tsai HG
    J Phys Chem B; 2021 Nov; 125(43):11893-11906. PubMed ID: 34618450
    [TBL] [Abstract][Full Text] [Related]  

  • 82. The herbicidally active experimental compound Hoe 704 is a potent inhibitor of the enzyme acetolactate reductoisomerase.
    Schulz A; Spönemann P; Köcher H; Wengenmayer F
    FEBS Lett; 1988 Oct; 238(2):375-8. PubMed ID: 3049163
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Synthesis, crystal structure, herbicidal activity and mode of action of new cyclopropane-1,1-dicarboxylic acid analogues.
    Min LJ; Shen ZH; Bajsa-Hirschel J; Cantrell CL; Han L; Hua XW; Liu XH; Duke SO
    Pestic Biochem Physiol; 2022 Nov; 188():105228. PubMed ID: 36464348
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Enzymology, structure, and dynamics of acetohydroxy acid isomeroreductase.
    Dumas R; Biou V; Halgand F; Douce R; Duggleby RG
    Acc Chem Res; 2001 May; 34(5):399-408. PubMed ID: 11352718
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Starvation survival response of Mycobacterium tuberculosis.
    Parish T
    J Bacteriol; 2003 Nov; 185(22):6702-6. PubMed ID: 14594845
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Use of Cryo-EM To Uncover Structural Bases of pH Effect and Cofactor Bispecificity of Ketol-Acid Reductoisomerase.
    Chen CY; Chang YC; Lin BL; Lin KF; Huang CH; Hsieh DL; Ko TP; Tsai MD
    J Am Chem Soc; 2019 Apr; 141(15):6136-6140. PubMed ID: 30921515
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Analysis of intracellular metabolites as tool for studying branched-chain amino acid biosynthesis and its inhibition in bacteria.
    Epelbaum S; Chipman DM; Barak Z
    Methods Enzymol; 2000; 324():10-23. PubMed ID: 10989413
    [No Abstract]   [Full Text] [Related]  

  • 88. Characterization of a class II ketol-acid reductoisomerase from
    Valera A; Wang S; Carr R; Trembleau L; Deng H
    RSC Adv; 2022 Mar; 12(17):10540-10544. PubMed ID: 35425013
    [No Abstract]   [Full Text] [Related]  

  • 89. Amino Acid Biosynthesis Inhibitors in Tuberculosis Drug Discovery.
    Guida M; Tammaro C; Quaranta M; Salvucci B; Biava M; Poce G; Consalvi S
    Pharmaceutics; 2024 May; 16(6):. PubMed ID: 38931847
    [TBL] [Abstract][Full Text] [Related]  

  • 90. The pathogenic mechanism of Mycobacterium tuberculosis: implication for new drug development.
    Yan W; Zheng Y; Dou C; Zhang G; Arnaout T; Cheng W
    Mol Biomed; 2022 Dec; 3(1):48. PubMed ID: 36547804
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Total Synthesis of the Antimycobacterial Natural Product Chlorflavonin and Analogs via a Late-Stage Ruthenium(II)-Catalyzed
    Berger A; Knak T; Kiffe-Delf AL; Mudrovcic K; Singh V; Njoroge M; Burckhardt BB; Gopalswamy M; Lungerich B; Ackermann L; Gohlke H; Chibale K; Kalscheuer R; Kurz T
    Pharmaceuticals (Basel); 2022 Aug; 15(8):. PubMed ID: 36015133
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Auxotrophic
    Dellagostin OA; Borsuk S; Oliveira TL; Seixas FK
    Vaccines (Basel); 2022 May; 10(5):. PubMed ID: 35632558
    [No Abstract]   [Full Text] [Related]  

  • 93. Dihydroxy-Acid Dehydratases From Pathogenic Bacteria: Emerging Drug Targets to Combat Antibiotic Resistance.
    Bayaraa T; Gaete J; Sutiono S; Kurz J; Lonhienne T; Harmer JR; Bernhardt PV; Sieber V; Guddat L; Schenk G
    Chemistry; 2022 Aug; 28(44):e202200927. PubMed ID: 35535733
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Development of a whole-cell high-throughput phenotypic screen to identify inhibitors of mycobacterial amino acid biosynthesis.
    Burke C; Abrahams KA; Richardson EJ; Loman NJ; Alemparte C; Lelievre J; Besra GS
    FASEB Bioadv; 2019 Apr; 1(4):246-254. PubMed ID: 32123830
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Intracellular Mycobacterium tuberculosis Exploits Multiple Host Nitrogen Sources during Growth in Human Macrophages.
    Borah K; Beyß M; Theorell A; Wu H; Basu P; Mendum TA; Nӧh K; Beste DJV; McFadden J
    Cell Rep; 2019 Dec; 29(11):3580-3591.e4. PubMed ID: 31825837
    [TBL] [Abstract][Full Text] [Related]  

  • 96. FgIlv3a is crucial in branched-chain amino acid biosynthesis, vegetative differentiation, and virulence in Fusarium graminearum.
    Liu X; Jiang Y; Zhang Y; Yu M; Jiang H; Xu J; Shi J
    J Microbiol; 2019 Aug; 57(8):694-703. PubMed ID: 31079334
    [TBL] [Abstract][Full Text] [Related]  

  • 97. 1,2,4-Triazolo[1,5-a]pyrimidines in drug design.
    Oukoloff K; Lucero B; Francisco KR; Brunden KR; Ballatore C
    Eur J Med Chem; 2019 Mar; 165():332-346. PubMed ID: 30703745
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Discovery and evaluation of novel Mycobacterium tuberculosis ketol-acid reductoisomerase inhibitors as therapeutic drug leads.
    Krishna VS; Zheng S; Rekha EM; Guddat LW; Sriram D
    J Comput Aided Mol Des; 2019 Mar; 33(3):357-366. PubMed ID: 30666485
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Structural insights into the mechanism of inhibition of AHAS by herbicides.
    Lonhienne T; Garcia MD; Pierens G; Mobli M; Nouwens A; Guddat LW
    Proc Natl Acad Sci U S A; 2018 Feb; 115(9):E1945-E1954. PubMed ID: 29440497
    [TBL] [Abstract][Full Text] [Related]  

  • 100.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.