These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 9819210)
1. The C2 catalytic domain of adenylyl cyclase contains the second metal ion (Mn2+) binding site. Mitterauer T; Hohenegger M; Tang WJ; Nanoff C; Freissmuth M Biochemistry; 1998 Nov; 37(46):16183-91. PubMed ID: 9819210 [TBL] [Abstract][Full Text] [Related]
2. The C1 homodimer of adenylyl cyclase binds nucleotides with high affinity but possesses exceedingly low catalytic activity. Suryanarayana S; Pinto C; Mou TC; Richter M; Lushington GH; Seifert R Neurosci Lett; 2009 Dec; 467(1):1-5. PubMed ID: 19788911 [TBL] [Abstract][Full Text] [Related]
3. Affinity labeling of two nucleotide sites on Na,K-ATPase using 2'(3')-O-(2,4,6-trinitrophenyl)8-azidoadenosine 5'-[alpha-32P]diphosphate (TNP-8N3-[alpha-32P]ADP) as a photoactivatable probe. Label incorporation before and after blocking the high affinity ATP site with fluorescein isothiocyanate. Ward DG; Cavieres JD J Biol Chem; 1998 Dec; 273(50):33759-65. PubMed ID: 9837964 [TBL] [Abstract][Full Text] [Related]
4. Structure of the adenylyl cyclase catalytic core. Zhang G; Liu Y; Ruoho AE; Hurley JH Nature; 1997 Mar; 386(6622):247-53. PubMed ID: 9069282 [TBL] [Abstract][Full Text] [Related]
5. Mapping of ATP binding regions in poly(A) polymerases by photoaffinity labeling and by mutational analysis identifies a domain conserved in many nucleotidyltransferases. Martin G; Jenö P; Keller W Protein Sci; 1999 Nov; 8(11):2380-91. PubMed ID: 10595540 [TBL] [Abstract][Full Text] [Related]
6. TNP-8N3-ADP photoaffinity labeling of two Na,K-ATPase sequences under separate Na+ plus K+ control. Ward DG; Taylor M; Lilley KS; Cavieres JD Biochemistry; 2006 Mar; 45(10):3460-71. PubMed ID: 16519541 [TBL] [Abstract][Full Text] [Related]
7. Characterization of the nucleotide binding properties of SV40 T antigen using fluorescent 3'(2')-O-(2,4,6-trinitrophenyl)adenine nucleotide analogues. Huang SG; Weisshart K; Fanning E Biochemistry; 1998 Nov; 37(44):15336-44. PubMed ID: 9799494 [TBL] [Abstract][Full Text] [Related]
8. Broad specificity of mammalian adenylyl cyclase for interaction with 2',3'-substituted purine- and pyrimidine nucleotide inhibitors. Mou TC; Gille A; Suryanarayana S; Richter M; Seifert R; Sprang SR Mol Pharmacol; 2006 Sep; 70(3):878-86. PubMed ID: 16766715 [TBL] [Abstract][Full Text] [Related]
9. Differential inhibition of various adenylyl cyclase isoforms and soluble guanylyl cyclase by 2',3'-O-(2,4,6-trinitrophenyl)-substituted nucleoside 5'-triphosphates. Suryanarayana S; Göttle M; Hübner M; Gille A; Mou TC; Sprang SR; Richter M; Seifert R J Pharmacol Exp Ther; 2009 Sep; 330(3):687-95. PubMed ID: 19494187 [TBL] [Abstract][Full Text] [Related]
10. A functional chimera of mammalian guanylyl and adenylyl cyclases. Weitmann S; Würsig N; Navarro JM; Kleuss C Biochemistry; 1999 Mar; 38(11):3409-13. PubMed ID: 10079086 [TBL] [Abstract][Full Text] [Related]
11. Conversion of forskolin-insensitive to forskolin-sensitive (mouse-type IX) adenylyl cyclase. Yan SZ; Huang ZH; Andrews RK; Tang WJ Mol Pharmacol; 1998 Feb; 53(2):182-7. PubMed ID: 9463474 [TBL] [Abstract][Full Text] [Related]
13. Photoinactivation of fluorescein isothiocyanate-modified Na,K-ATPase by 2'(3')-O-(2,4,6-trinitrophenyl)8-azidoadenosine 5'-diphosphate. Abolition of E1 and E2 partial reactions by sequential block of high and low affinity nucleotide sites. Ward DG; Cavieres JD J Biol Chem; 1998 Jun; 273(23):14277-84. PubMed ID: 9603934 [TBL] [Abstract][Full Text] [Related]
14. Direct photoaffinity labeling of individual cytosolic domains of adenylyl cyclase by [32P]2'-deoxy-3'-AMP and [alpha-32P]5'-ATP. Doronin S; Dessauer C; Johnson RA J Biol Chem; 1998 Dec; 273(49):32416-20. PubMed ID: 9829971 [TBL] [Abstract][Full Text] [Related]
15. A second magnesium ion is critical for ATP binding in the kinase domain of the oncoprotein v-Fps. Saylor P; Wang C; Hirai TJ; Adams JA Biochemistry; 1998 Sep; 37(36):12624-30. PubMed ID: 9730835 [TBL] [Abstract][Full Text] [Related]
16. Molecular analysis of the interaction of Bordetella pertussis adenylyl cyclase with fluorescent nucleotides. Göttle M; Dove S; Steindel P; Shen Y; Tang WJ; Geduhn J; König B; Seifert R Mol Pharmacol; 2007 Sep; 72(3):526-35. PubMed ID: 17553924 [TBL] [Abstract][Full Text] [Related]
17. Mechanism of Galpha i-mediated inhibition of type V adenylyl cyclase. Dessauer CW; Chen-Goodspeed M; Chen J J Biol Chem; 2002 Aug; 277(32):28823-9. PubMed ID: 12058044 [TBL] [Abstract][Full Text] [Related]
18. The number of nucleotide binding sites in cytochrome C oxidase. Rieger T; Napiwotzki J; Hüther FJ; Kadenbach B Biochem Biophys Res Commun; 1995 Dec; 217(1):34-40. PubMed ID: 8526931 [TBL] [Abstract][Full Text] [Related]
19. ATP binding properties of the soluble part of the KdpC subunit from the Escherichia coli K(+)-transporting KdpFABC P-type ATPase. Ahnert F; Schmid R; Altendorf K; Greie JC Biochemistry; 2006 Sep; 45(36):11038-46. PubMed ID: 16953591 [TBL] [Abstract][Full Text] [Related]
20. Mechanistic insights in light-induced cAMP production by photoactivated adenylyl cyclase alpha (PACalpha). Looser J; Schröder-Lang S; Hegemann P; Nagel G Biol Chem; 2009 Nov; 390(11):1105-11. PubMed ID: 19747080 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]