BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

344 related articles for article (PubMed ID: 9819211)

  • 1. Contribution of a conserved asparagine to the conformational stability of ribonucleases Sa, Ba, and T1.
    Hebert EJ; Giletto A; Sevcik J; Urbanikova L; Wilson KS; Dauter Z; Pace CN
    Biochemistry; 1998 Nov; 37(46):16192-200. PubMed ID: 9819211
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Buried, charged, non-ion-paired aspartic acid 76 contributes favorably to the conformational stability of ribonuclease T1.
    Giletto A; Pace CN
    Biochemistry; 1999 Oct; 38(40):13379-84. PubMed ID: 10529213
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tyrosine hydrogen bonds make a large contribution to protein stability.
    Pace CN; Horn G; Hebert EJ; Bechert J; Shaw K; Urbanikova L; Scholtz JM; Sevcik J
    J Mol Biol; 2001 Sep; 312(2):393-404. PubMed ID: 11554795
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contribution of hydrogen bonding to the conformational stability of ribonuclease T1.
    Shirley BA; Stanssens P; Hahn U; Pace CN
    Biochemistry; 1992 Jan; 31(3):725-32. PubMed ID: 1731929
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contribution of single tryptophan residues to the fluorescence and stability of ribonuclease Sa.
    Alston RW; Urbanikova L; Sevcik J; Lasagna M; Reinhart GD; Scholtz JM; Pace CN
    Biophys J; 2004 Dec; 87(6):4036-47. PubMed ID: 15377518
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conformational stability and thermodynamics of folding of ribonucleases Sa, Sa2 and Sa3.
    Pace CN; Hebert EJ; Shaw KL; Schell D; Both V; Krajcikova D; Sevcik J; Wilson KS; Dauter Z; Hartley RW; Grimsley GR
    J Mol Biol; 1998 May; 279(1):271-86. PubMed ID: 9636716
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Asp79 makes a large, unfavorable contribution to the stability of RNase Sa.
    Trevino SR; Gokulan K; Newsom S; Thurlkill RL; Shaw KL; Mitkevich VA; Makarov AA; Sacchettini JC; Scholtz JM; Pace CN
    J Mol Biol; 2005 Dec; 354(4):967-78. PubMed ID: 16288913
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contribution of hydrogen bonds to protein stability.
    Pace CN; Fu H; Lee Fryar K; Landua J; Trevino SR; Schell D; Thurlkill RL; Imura S; Scholtz JM; Gajiwala K; Sevcik J; Urbanikova L; Myers JK; Takano K; Hebert EJ; Shirley BA; Grimsley GR
    Protein Sci; 2014 May; 23(5):652-61. PubMed ID: 24591301
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrogen bonding markedly reduces the pK of buried carboxyl groups in proteins.
    Thurlkill RL; Grimsley GR; Scholtz JM; Pace CN
    J Mol Biol; 2006 Sep; 362(3):594-604. PubMed ID: 16934292
    [TBL] [Abstract][Full Text] [Related]  

  • 10. His...Asp catalytic dyad of ribonuclease A: conformational stability of the wild-type, D121N, D121A, and H119A enzymes.
    Quirk DJ; Park C; Thompson JE; Raines RT
    Biochemistry; 1998 Dec; 37(51):17958-64. PubMed ID: 9922164
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ribonuclease Sa conformational stability studied by NMR-monitored hydrogen exchange.
    Laurents DV; Scholtz JM; Rico M; Pace CN; Bruix M
    Biochemistry; 2005 May; 44(21):7644-55. PubMed ID: 15909979
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Charge-charge interactions are key determinants of the pK values of ionizable groups in ribonuclease Sa (pI=3.5) and a basic variant (pI=10.2).
    Laurents DV; Huyghues-Despointes BM; Bruix M; Thurlkill RL; Schell D; Newsom S; Grimsley GR; Shaw KL; Treviño S; Rico M; Briggs JM; Antosiewicz JM; Scholtz JM; Pace CN
    J Mol Biol; 2003 Jan; 325(5):1077-92. PubMed ID: 12527309
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contribution of buried hydrogen bonds to protein stability. The crystal structures of two barnase mutants.
    Chen YW; Fersht AR; Henrick K
    J Mol Biol; 1993 Dec; 234(4):1158-70. PubMed ID: 8263918
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recognition of RNase Sa by the inhibitor barstar: structure of the complex at 1.7 A resolution.
    Sevcík J; Urbanikova L; Dauter Z; Wilson KS
    Acta Crystallogr D Biol Crystallogr; 1998 Sep; 54(Pt 5):954-63. PubMed ID: 9757110
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dissecting histidine interactions of ribonuclease T1 with asparagine and glutamine replacements: analysis of double mutant cycles at one position.
    De Vos S; Doumen J; Langhorst U; Steyaert J
    J Mol Biol; 1998 Jan; 275(4):651-61. PubMed ID: 9466938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrogen-exchange stabilities of RNase T1 and variants with buried and solvent-exposed Ala --> Gly mutations in the helix.
    Huyghues-Despointes BM; Langhorst U; Steyaert J; Pace CN; Scholtz JM
    Biochemistry; 1999 Dec; 38(50):16481-90. PubMed ID: 10600109
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insertion in barnase of a loop sequence from ribonuclease T1. Investigating sequence and structure alignments by protein engineering.
    Vuilleumier S; Fersht AR
    Eur J Biochem; 1994 May; 221(3):1003-12. PubMed ID: 8181455
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of a water mediated protein-protein interactions within RNase T1.
    Langhorst U; Backmann J; Loris R; Steyaert J
    Biochemistry; 2000 Jun; 39(22):6586-93. PubMed ID: 10828976
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dissection of the structural and functional role of a conserved hydration site in RNase T1.
    Langhorst U; Loris R; Denisov VP; Doumen J; Roose P; Maes D; Halle B; Steyaert J
    Protein Sci; 1999 Apr; 8(4):722-30. PubMed ID: 10211818
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An irregular beta-bulge common to a group of bacterial RNases is an important determinant of stability and function in barnase.
    Axe DD; Foster NW; Fersht AR
    J Mol Biol; 1999 Mar; 286(5):1471-85. PubMed ID: 10064710
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.