These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
105 related articles for article (PubMed ID: 9819914)
1. Microsatellite primers for Culex pipiens quinquefasciatus, the vector of avian malaria in Hawaii. Fonseca DM; Atkinson CT; Fleischer RC Mol Ecol; 1998 Nov; 7(11):1617-9. PubMed ID: 9819914 [No Abstract] [Full Text] [Related]
2. Pathways of expansion and multiple introductions illustrated by large genetic differentiation among worldwide populations of the southern house mosquito. Fonseca DM; Smith JL; Wilkerson RC; Fleischer RC Am J Trop Med Hyg; 2006 Feb; 74(2):284-9. PubMed ID: 16474085 [TBL] [Abstract][Full Text] [Related]
3. Bottlenecks and multiple introductions: population genetics of the vector of avian malaria in Hawaii. Fonseca DM; LaPointe DA; Fleischer RC Mol Ecol; 2000 Nov; 9(11):1803-14. PubMed ID: 11091316 [TBL] [Abstract][Full Text] [Related]
4. Comparative susceptibility of introduced forest-dwelling mosquitoes in Hawai'i to avian malaria, Plasmodium relictum. LaPointe DA; Goff ML; Atkinson CT J Parasitol; 2005 Aug; 91(4):843-9. PubMed ID: 17089752 [TBL] [Abstract][Full Text] [Related]
5. Fine-scale population genetic structure of a wildlife disease vector: the southern house mosquito on the island of Hawaii. Keyghobadi N; Lapointe D; Fleischer RC; Fonseca DM Mol Ecol; 2006 Nov; 15(13):3919-30. PubMed ID: 17054493 [TBL] [Abstract][Full Text] [Related]
7. Complete sporogony of Plasmodium relictum (lineages pSGS1 and pGRW11) in mosquito Culex pipiens pipiens form molestus, with implications to avian malaria epidemiology. Žiegytė R; Bernotienė R; Bukauskaitė D; Palinauskas V; Iezhova T; Valkiūnas G J Parasitol; 2014 Dec; 100(6):878-82. PubMed ID: 24979183 [TBL] [Abstract][Full Text] [Related]
8. Seasonal changes in the feeding pattern of Culex pipiens pallens govern the transmission dynamics of multiple lineages of avian malaria parasites in Japanese wild bird community. Kim KS; Tsuda Y Mol Ecol; 2010 Dec; 19(24):5545-54. PubMed ID: 21044196 [TBL] [Abstract][Full Text] [Related]
9. A polymerase chain reaction based method for the detection of Culex quinquefasciatus (Diptera: culicidae). Hettiaratchi UP; Munasingha DH; Chandrasekharan NV; Karunanayake EH; Jayasekera N Bull Entomol Res; 2000 Feb; 90(1):63-8. PubMed ID: 10948365 [TBL] [Abstract][Full Text] [Related]
10. PCR-based identification of Culex pipiens complex collected in Japan. Kasai S; Komagata O; Tomita T; Sawabe K; Tsuda Y; Kurahashi H; Ishikawa T; Motoki M; Takahashi T; Tanikawa T; Yoshida M; Shinjo G; Hashimoto T; Higa Y; Kobayashi M Jpn J Infect Dis; 2008 May; 61(3):184-91. PubMed ID: 18503166 [TBL] [Abstract][Full Text] [Related]
11. Local prevalence and transmission of avian malaria in the Alakai Plateau of Kauai, Hawaii, U.S.A. Glad A; Crampton LH J Vector Ecol; 2015 Dec; 40(2):221-9. PubMed ID: 26611954 [TBL] [Abstract][Full Text] [Related]
12. Disruption of the Wolbachia surface protein gene wspB by a transposable element in mosquitoes of the Culex pipiens complex (Diptera, Culicidae). Sanogo YO; Dobson SL; Bordenstein SR; Novak RJ Insect Mol Biol; 2007 Apr; 16(2):143-54. PubMed ID: 17298560 [TBL] [Abstract][Full Text] [Related]
13. A real-time TaqMan polymerase chain reaction for the identification of Culex vectors of West Nile and Saint Louis encephalitis viruses in North America. Sanogo YO; Kim CH; Lampman R; Novak RJ Am J Trop Med Hyg; 2007 Jul; 77(1):58-66. PubMed ID: 17620631 [TBL] [Abstract][Full Text] [Related]
14. Rapid assay to identify the two genetic forms of Culex (Culex) pipiens L. (Diptera: Culicidae) and hybrid populations. Bahnck CM; Fonseca DM Am J Trop Med Hyg; 2006 Aug; 75(2):251-5. PubMed ID: 16896127 [TBL] [Abstract][Full Text] [Related]
15. The acetylcholinesterase gene Ace: a diagnostic marker for the Pipiens and Quinquefasciatus forms of the Culex pipiens complex. Bourguet D; Fonseca D; Vourch G; Dubois MP; Chandre F; Severini C; Raymond M J Am Mosq Control Assoc; 1998 Dec; 14(4):390-6. PubMed ID: 10084132 [TBL] [Abstract][Full Text] [Related]
16. Vector ability of mosquitoes for isolates of Plasmodium elongatum from raptors in Florida. Nayar JK; Knight JW; Telford SR J Parasitol; 1998 Jun; 84(3):542-6. PubMed ID: 9645854 [TBL] [Abstract][Full Text] [Related]
17. Polymerase chain reaction assay identifies North American members of the Culex pipiens complex based on nucleotide sequence differences in the acetylcholinesterase gene Ace.2. Aspen S; Savage HM J Am Mosq Control Assoc; 2003 Dec; 19(4):323-8. PubMed ID: 14710732 [TBL] [Abstract][Full Text] [Related]
18. Vector movement underlies avian malaria at upper elevation in Hawaii: implications for transmission of human malaria. Freed LA; Cann RL Parasitol Res; 2013 Nov; 112(11):3887-95. PubMed ID: 23982310 [TBL] [Abstract][Full Text] [Related]
19. Polymerase chain reaction assay identifies Culex nigripalpus: part of an assay for molecular identification of the common Culex (Culex) mosquitoes of the eastern United States. Aspen S; Crabtree MB; Savage HM J Am Mosq Control Assoc; 2003 Jun; 19(2):115-20. PubMed ID: 12825660 [TBL] [Abstract][Full Text] [Related]
20. Emerging vectors in the Culex pipiens complex. Fonseca DM; Keyghobadi N; Malcolm CA; Mehmet C; Schaffner F; Mogi M; Fleischer RC; Wilkerson RC Science; 2004 Mar; 303(5663):1535-8. PubMed ID: 15001783 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]