These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 982022)
1. A model of nitrogenase active-centre and mechanism of nitrogenase catalysis. Sci Sin; 1976; 19(4):460-74. PubMed ID: 982022 [TBL] [Abstract][Full Text] [Related]
2. Structure and mechanism of catalytic action of active sites of nitrogenase. Likhtenshtein GI; Gvozdev RI; Levchenko LA; Syrtsova LA Biol Bull Acad Sci USSR; 1978; 5(2):125-42. PubMed ID: 154348 [TBL] [Abstract][Full Text] [Related]
3. Effects on substrate reduction of substitution of histidine-195 by glutamine in the alpha-subunit of the MoFe protein of Azotobacter vinelandii nitrogenase. Dilworth MJ; Fisher K; Kim CH; Newton WE Biochemistry; 1998 Dec; 37(50):17495-505. PubMed ID: 9860864 [TBL] [Abstract][Full Text] [Related]
4. Changes in the midpoint potentials of the nitrogenase metal centers as a result of iron protein-molybdenum-iron protein complex formation. Lanzilotta WN; Seefeldt LC Biochemistry; 1997 Oct; 36(42):12976-83. PubMed ID: 9335558 [TBL] [Abstract][Full Text] [Related]
5. Electron transfer in nitrogenase analyzed by Marcus theory: evidence for gating by MgATP. Lanzilotta WN; Parker VD; Seefeldt LC Biochemistry; 1998 Jan; 37(1):399-407. PubMed ID: 9425061 [TBL] [Abstract][Full Text] [Related]
6. [Study of the topography of the nitrogenase active center by the electron microscopy method with the use of the electron density labels]. Levchenko LA; Raevskiĭ AV; Likhtenshteĭn GI; Sadkov AP; Pivovarova TS Biokhimiia; 1977 Oct; 42(10):1755-64. PubMed ID: 922065 [TBL] [Abstract][Full Text] [Related]
7. Electron-transfer chemistry of the iron-molybdenum cofactor of nitrogenase: delocalized and localized reduced states of FeMoco which allow binding of carbon monoxide to iron and molybdenum. Pickett CJ; Vincent KA; Ibrahim SK; Gormal CA; Smith BE; Best SP Chemistry; 2003 Jan; 9(1):76-87. PubMed ID: 12506366 [TBL] [Abstract][Full Text] [Related]
8. Electron transfer from the nitrogenase iron protein to the [8Fe-(7/8)S] clusters of the molybdenum-iron protein. Lanzilotta WN; Seefeldt LC Biochemistry; 1996 Dec; 35(51):16770-6. PubMed ID: 8988014 [TBL] [Abstract][Full Text] [Related]
9. Evidence for electron transfer from the nitrogenase iron protein to the molybdenum-iron protein without MgATP hydrolysis: characterization of a tight protein-protein complex. Lanzilotta WN; Fisher K; Seefeldt LC Biochemistry; 1996 Jun; 35(22):7188-96. PubMed ID: 8679547 [TBL] [Abstract][Full Text] [Related]
10. Stopped-flow Fourier transform infrared spectroscopy allows continuous monitoring of azide reduction, carbon monoxide inhibition, and ATP hydrolysis by nitrogenase. Tolland JD; Thorneley RN Biochemistry; 2005 Jul; 44(27):9520-7. PubMed ID: 15996106 [TBL] [Abstract][Full Text] [Related]
11. Reductant-independent ATP hydrolysis catalyzed by homologous nitrogenase proteins from Azotobacter vinelandii and heterologous crosses with Clostridium pasteuranium. Larsen C; Christensen S; Watt GD Arch Biochem Biophys; 1995 Nov; 323(2):215-22. PubMed ID: 7487080 [TBL] [Abstract][Full Text] [Related]
12. The chemical mechanism of nitrogenase: hydrogen tunneling and further aspects of the intramolecular mechanism for hydrogenation of eta(2)-N(2) on FeMo-co to NH(3). Dance I Dalton Trans; 2008 Nov; (43):5992-8. PubMed ID: 19082055 [TBL] [Abstract][Full Text] [Related]
13. Docking of nitrogenase iron- and molybdenum-iron proteins for electron transfer and MgATP hydrolysis: the role of arginine 140 and lysine 143 of the Azotobacter vinelandii iron protein. Seefeldt LC Protein Sci; 1994 Nov; 3(11):2073-81. PubMed ID: 7703853 [TBL] [Abstract][Full Text] [Related]
14. ATP- and iron-protein-independent activation of nitrogenase catalysis by light. Roth LE; Nguyen JC; Tezcan FA J Am Chem Soc; 2010 Oct; 132(39):13672-4. PubMed ID: 20843032 [TBL] [Abstract][Full Text] [Related]
15. An atomic level model for the interactions of molybdenum nitrogenase with carbon monoxide, acetylene, and ethylene. Durrant MC Biochemistry; 2004 May; 43(20):6030-42. PubMed ID: 15147187 [TBL] [Abstract][Full Text] [Related]
16. The chemical mechanism of nitrogenase: calculated details of the intramolecular mechanism for hydrogenation of eta(2)-N(2) on FeMo-co to NH(3). Dance I Dalton Trans; 2008 Nov; (43):5977-91. PubMed ID: 19082054 [TBL] [Abstract][Full Text] [Related]
17. Nonenzymatic simulation of nitrogenase reactions and the mechanism of biological nitrogen fixation. Schrauzer GN Angew Chem Int Ed Engl; 1975 Aug; 14(8):514-22. PubMed ID: 810048 [No Abstract] [Full Text] [Related]
18. Investigation of CO binding and release from Mo-nitrogenase during catalytic turnover. Cameron LM; Hales BJ Biochemistry; 1998 Jun; 37(26):9449-56. PubMed ID: 9649328 [TBL] [Abstract][Full Text] [Related]
19. The [4Fe-4S] cluster domain of the nitrogenase iron protein facilitates conformational changes required for the cooperative binding of two nucleotides. Ryle MJ; Seefeldt LC Biochemistry; 1996 Dec; 35(49):15654-62. PubMed ID: 8961928 [TBL] [Abstract][Full Text] [Related]
20. The hydrogen chemistry of the FeMo-co active site of nitrogenase. Dance I J Am Chem Soc; 2005 Aug; 127(31):10925-42. PubMed ID: 16076199 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]