BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 9820954)

  • 1. Triple helix-forming oligonucleotides which make imperfect Watson-Crick duplexes that compete with the creation of the triplex.
    Porumb H; Gousset H; Taillandier E
    Electrophoresis; 1998 Oct; 19(14):2389-90. PubMed ID: 9820954
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence for a DNA triplex in a recombination-like motif: I. Recognition of Watson-Crick base pairs by natural bases in a high-stability triplex.
    Walter A; Schütz H; Simon H; Birch-Hirschfeld E
    J Mol Recognit; 2001; 14(2):122-39. PubMed ID: 11301482
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular recognition of Watson-Crick base-pair reversals in triple-helix formation: use of nonnatural oligonucleotide bases.
    Mohan V; Cheng YK; Marlow GE; Pettitt BM
    Biopolymers; 1993 Sep; 33(9):1317-25. PubMed ID: 8400029
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequence-specific artificial photo-induced endonucleases based on triple helix-forming oligonucleotides.
    Perrouault L; Asseline U; Rivalle C; Thuong NT; Bisagni E; Giovannangeli C; Le Doan T; Hélène C
    Nature; 1990 Mar; 344(6264):358-60. PubMed ID: 2156170
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Triple helix formation by (G,A)-containing oligonucleotides: asymmetric sequence effect.
    Arimondo PB; Barcelo F; Sun JS; Maurizot JC; Garestier T; Hélène C
    Biochemistry; 1998 Nov; 37(47):16627-35. PubMed ID: 9843430
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pyrimidine morpholino oligonucleotides form a stable triple helix in the absence of magnesium ions.
    Lacroix L; Arimondo PB; Takasugi M; Hélène C; Mergny JL
    Biochem Biophys Res Commun; 2000 Apr; 270(2):363-9. PubMed ID: 10753631
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly stable DNA triplexes formed with cationic phosphoramidate pyrimidine alpha-oligonucleotides.
    Michel T; Debart F; Heitz F; Vasseur JJ
    Chembiochem; 2005 Jul; 6(7):1254-62. PubMed ID: 15912553
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energetics of strand-displacement reactions in triple helices: a spectroscopic study.
    Mills M; Arimondo PB; Lacroix L; Garestier T; Hélène C; Klump H; Mergny JL
    J Mol Biol; 1999 Sep; 291(5):1035-54. PubMed ID: 10518941
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of oligonucleotides for sequence-specific triple-helix formation. Properties of oligonucleotides containing 2'-deoxyxanthosine.
    Shimizu M; Inoue H; Ohtsuka E
    Nucleic Acids Symp Ser; 1991; (25):141-2. PubMed ID: 1842059
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of 5-methylcytosine on the structure and stability of DNA. Formation of triple-stranded concatenamers by overlapping oligonucleotides.
    Xodo LE; Alunni-Fabbroni M; Manzini G
    J Biomol Struct Dyn; 1994 Feb; 11(4):703-20. PubMed ID: 8204209
    [TBL] [Abstract][Full Text] [Related]  

  • 11. HIV-1 nucleocapsid protein as a nucleic acid chaperone: spectroscopic study of its helix-destabilizing properties, structural binding specificity, and annealing activity.
    Urbaneja MA; Wu M; Casas-Finet JR; Karpel RL
    J Mol Biol; 2002 May; 318(3):749-64. PubMed ID: 12054820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An extra dimension in nucleic acid sequence recognition.
    Fox KR; Brown T
    Q Rev Biophys; 2005 Nov; 38(4):311-20. PubMed ID: 16737560
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The ability of locked nucleic acid oligonucleotides to pre-structure the double helix: A molecular simulation and binding study.
    Xu Y; Gissberg O; Pabon-Martinez YV; Wengel J; Lundin KE; Smith CIE; Zain R; Nilsson L; Villa A
    PLoS One; 2019; 14(2):e0211651. PubMed ID: 30753192
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Stabilization of DNA triple helix using conjugates of oligonucleotides and synthetic ligands].
    Siniakov AN; Riabinin VA; Grimm GN; Butorin AS
    Mol Biol (Mosk); 2001; 35(2):298-308. PubMed ID: 11357412
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative studies on parallel and antiparallel duplex and triplex DNA.
    Liu CQ; Shi XF; Bai CL; Zhao J; Wang Y
    J Theor Biol; 1997 Feb; 184(3):319-25. PubMed ID: 9082068
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Triplex formation by oligonucleotides containing 5-(1-propynyl)-2'-deoxyuridine: decreased magnesium dependence and improved intracellular gene targeting.
    Lacroix L; Lacoste J; Reddoch JF; Mergny JL; Levy DD; Seidman MM; Matteucci MD; Glazer PM
    Biochemistry; 1999 Feb; 38(6):1893-901. PubMed ID: 10026270
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of triple helix forming C-glycoside molecules.
    Li JS; Fan YH; Zhang Y; Marky LA; Gold B
    J Am Chem Soc; 2003 Feb; 125(8):2084-93. PubMed ID: 12590536
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure of an RNA duplex r(GGCGBrUGCGCU)2 with terminal and internal tandem G.U base pairs.
    Utsunomiya R; Suto K; Balasundaresan D; Fukamizu A; Kumar PK; Mizuno H
    Acta Crystallogr D Biol Crystallogr; 2006 Mar; 62(Pt 3):331-8. PubMed ID: 16510980
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel DNA duplex. A parallel-stranded DNA helix with Hoogsteen base pairing.
    Liu K; Miles HT; Frazier J; Sasisekharan V
    Biochemistry; 1993 Nov; 32(44):11802-9. PubMed ID: 8218251
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved synthesis of daunomycin conjugates with triplex-forming oligonucleotides. The polypurine tract of HIV-1 as a target.
    Capobianco ML; De Champdoré M; Arcamone F; Garbesi A; Guianvarc'h D; B Arimondo P
    Bioorg Med Chem; 2005 May; 13(9):3209-18. PubMed ID: 15809156
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.