BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 9821634)

  • 1. Dependence of dopamine calibration factors on media Ca2+ and Mg2+ at carbon-fiber microelectrodes used with fast-scan cyclic voltammetry.
    Kume-Kick J; Rice ME
    J Neurosci Methods; 1998 Oct; 84(1-2):55-62. PubMed ID: 9821634
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characteristics of electrically evoked somatodendritic dopamine release in substantia nigra and ventral tegmental area in vitro.
    Rice ME; Cragg SJ; Greenfield SA
    J Neurophysiol; 1997 Feb; 77(2):853-62. PubMed ID: 9065854
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monitoring axonal and somatodendritic dopamine release using fast-scan cyclic voltammetry in brain slices.
    Patel JC; Rice ME
    Methods Mol Biol; 2013; 964():243-73. PubMed ID: 23296788
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heterogeneity of electrically evoked dopamine release and reuptake in substantia nigra, ventral tegmental area, and striatum.
    Cragg S; Rice ME; Greenfield SA
    J Neurophysiol; 1997 Feb; 77(2):863-73. PubMed ID: 9065855
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Limited regulation of somatodendritic dopamine release by voltage-sensitive Ca channels contrasted with strong regulation of axonal dopamine release.
    Chen BT; Moran KA; Avshalumov MV; Rice ME
    J Neurochem; 2006 Feb; 96(3):645-55. PubMed ID: 16405515
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synaptic regulation of somatodendritic dopamine release by glutamate and GABA differs between substantia nigra and ventral tegmental area.
    Chen BT; Rice ME
    J Neurochem; 2002 Apr; 81(1):158-69. PubMed ID: 12067228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Overoxidation of carbon-fiber microelectrodes enhances dopamine adsorption and increases sensitivity.
    Heien ML; Phillips PE; Stuber GD; Seipel AT; Wightman RM
    Analyst; 2003 Dec; 128(12):1413-9. PubMed ID: 14737224
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ion-exchange voltammetry of dopamine at Nafion-coated glassy carbon electrodes: quantitative features of ion-exchange partition and reassessment on the oxidation mechanism of dopamine in the presence of excess ascorbic acid.
    Rocha LS; Carapuça HM
    Bioelectrochemistry; 2006 Oct; 69(2):258-66. PubMed ID: 16713377
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct monitoring of dopamine and 5-HT release in substantia nigra and ventral tegmental area in vitro.
    Rice ME; Richards CD; Nedergaard S; Hounsgaard J; Nicholson C; Greenfield SA
    Exp Brain Res; 1994; 100(3):395-406. PubMed ID: 7813678
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved Calibration of Voltammetric Sensors for Studying Pharmacological Effects on Dopamine Transporter Kinetics in Vivo.
    Atcherley CW; Laude ND; Monroe EB; Wood KM; Hashemi P; Heien ML
    ACS Chem Neurosci; 2015 Sep; 6(9):1509-16. PubMed ID: 25062330
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interference by pH and Ca2+ ions during measurements of catecholamine release in slices of rat amygdala with fast-scan cyclic voltammetry.
    Jones SR; Mickelson GE; Collins LB; Kawagoe KT; Wightman RM
    J Neurosci Methods; 1994 Apr; 52(1):1-10. PubMed ID: 8090011
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Response times of carbon fiber microelectrodes to dynamic changes in catecholamine concentration.
    Venton BJ; Troyer KP; Wightman RM
    Anal Chem; 2002 Feb; 74(3):539-46. PubMed ID: 11838672
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of cocaine, nomifensine, GBR 12909 and WIN 35428 on carbon fiber microelectrode sensitivity for voltammetric recording of dopamine.
    Davidson C; Ellinwood EH; Douglas SB; Lee TH
    J Neurosci Methods; 2000 Aug; 101(1):75-83. PubMed ID: 10967364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel electrochemical approach for prolonged measurement of absolute levels of extracellular dopamine in brain slices.
    Burrell MH; Atcherley CW; Heien ML; Lipski J
    ACS Chem Neurosci; 2015 Nov; 6(11):1802-12. PubMed ID: 26322962
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overoxidized polypyrrole-coated carbon fiber microelectrodes for dopamine measurements with fast-scan cyclic voltammetry.
    Pihel K; Walker QD; Wightman RM
    Anal Chem; 1996 Jul; 68(13):2084-9. PubMed ID: 9027223
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving in Situ Electrode Calibration with Principal Component Regression for Fast-Scan Cyclic Voltammetry.
    Schuweiler DR; Howard CD; Ramsson ES; Garris PA
    Anal Chem; 2018 Nov; 90(22):13434-13442. PubMed ID: 30335966
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new technique for measuring the temporal characteristics of the carbon fibre microelectrodes in in vivo voltammetry at millisecond time intervals.
    Yavich L
    J Neurosci Methods; 1998 Oct; 84(1-2):29-32. PubMed ID: 9821630
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly selective and sensitive determination of dopamine using a Nafion/carbon nanotubes coated poly(3-methylthiophene) modified electrode.
    Wang HS; Li TH; Jia WL; Xu HY
    Biosens Bioelectron; 2006 Dec; 22(5):664-9. PubMed ID: 16621509
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein Pretreatment of Microelectrodes Enables in Vivo Electrochemical Measurements with Easy Precalibration and Interference-Free from Proteins.
    Liu X; Zhang M; Xiao T; Hao J; Li R; Mao L
    Anal Chem; 2016 Jul; 88(14):7238-44. PubMed ID: 27327860
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-time chemical measurements of dopamine release in the brain.
    Roberts JG; Lugo-Morales LZ; Loziuk PL; Sombers LA
    Methods Mol Biol; 2013; 964():275-94. PubMed ID: 23296789
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.