These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 9821634)

  • 41. Modulation of somatodendritic dopamine release by endogenous H(2)O(2): susceptibility in substantia nigra but resistance in VTA.
    Chen BT; Avshalumov MV; Rice ME
    J Neurophysiol; 2002 Feb; 87(2):1155-8. PubMed ID: 11826083
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Methodology for coupling local application of dopamine and other chemicals with rapid in vivo electrochemical recordings in freely-moving rats.
    Gerhardt GA; Ksir C; Pivik C; Dickinson SD; Sabeti J; Zahniser NR
    J Neurosci Methods; 1999 Feb; 87(1):67-76. PubMed ID: 10065995
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Quantitation of in vivo measurements with carbon fiber microelectrodes.
    Logman MJ; Budygin EA; Gainetdinov RR; Wightman RM
    J Neurosci Methods; 2000 Feb; 95(2):95-102. PubMed ID: 10752479
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Real-time effects of N-methyl-D-aspartic acid on dopamine release in slices of rat caudate putamen: a study using fast cyclic voltammetry.
    Iravani MM; Kruk ZL
    J Neurochem; 1996 Mar; 66(3):1076-85. PubMed ID: 8769869
    [TBL] [Abstract][Full Text] [Related]  

  • 45. In vitro and in vivo characterization of the properties of a multifiber carbon electrode allowing long-term electrochemical detection of dopamine in freely moving animals.
    el Ganouni S; Forni C; Nieoullon A
    Brain Res; 1987 Feb; 404(1-2):239-56. PubMed ID: 3494483
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A pipette-based calibration system for fast-scan cyclic voltammetry with fast response times.
    Ramsson ES
    Biotechniques; 2016; 61(5):269-271. PubMed ID: 27839513
    [TBL] [Abstract][Full Text] [Related]  

  • 47. In vivo detection of neurotransmitters with fast cyclic voltammetry.
    Millar J
    Methods Mol Biol; 1997; 72():251-66. PubMed ID: 9249752
    [No Abstract]   [Full Text] [Related]  

  • 48. Dopamine-mediated volume transmission in midbrain is regulated by distinct extracellular geometry and uptake.
    Cragg SJ; Nicholson C; Kume-Kick J; Tao L; Rice ME
    J Neurophysiol; 2001 Apr; 85(4):1761-71. PubMed ID: 11287497
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Simultaneous electrochemical determination of dopamine, uric acid and ascorbic acid using palladium nanoparticle-loaded carbon nanofibers modified electrode.
    Huang J; Liu Y; Hou H; You T
    Biosens Bioelectron; 2008 Dec; 24(4):632-7. PubMed ID: 18640024
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Functional and anatomical evidence for different dopamine dynamics in the core and shell of the nucleus accumbens in slices of rat brain.
    Jones SR; O'Dell SJ; Marshall JF; Wightman RM
    Synapse; 1996 Jul; 23(3):224-31. PubMed ID: 8807751
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Carbon fiber microelectrodes with multiple sensing elements for in vivo voltammetry.
    Dressman SF; Peters JL; Michael AC
    J Neurosci Methods; 2002 Sep; 119(1):75-81. PubMed ID: 12234638
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Characterization of Optically and Electrically Evoked Dopamine Release in Striatal Slices from Digenic Knock-in Mice with DAT-Driven Expression of Channelrhodopsin.
    O'Neill B; Patel JC; Rice ME
    ACS Chem Neurosci; 2017 Feb; 8(2):310-319. PubMed ID: 28177213
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Voltammetric detection of 5-hydroxytryptamine release in the rat brain.
    Hashemi P; Dankoski EC; Petrovic J; Keithley RB; Wightman RM
    Anal Chem; 2009 Nov; 81(22):9462-71. PubMed ID: 19827792
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Unmasking the Effects of L-DOPA on Rapid Dopamine Signaling with an Improved Approach for Nafion Coating Carbon-Fiber Microelectrodes.
    Qi L; Thomas E; White SH; Smith SK; Lee CA; Wilson LR; Sombers LA
    Anal Chem; 2016 Aug; 88(16):8129-36. PubMed ID: 27441547
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Moving Fast-Scan Cyclic Voltammetry toward FDA Compliance with Capacitive Decoupling Patient Protection.
    Siegenthaler JR; Gushiken BC; Hill DF; Cowen SL; Heien ML
    ACS Sens; 2020 Jul; 5(7):1890-1899. PubMed ID: 32580544
    [TBL] [Abstract][Full Text] [Related]  

  • 56. In vivo electrochemistry--principles and applications.
    Martin KF; Marsden CA
    Life Sci; 1987 Aug; 41(7):865-8. PubMed ID: 3613846
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Ex Vivo Measurement of Electrically Evoked Dopamine Release in Zebrafish Whole Brain.
    Shin M; Field TM; Stucky CS; Furgurson MN; Johnson MA
    ACS Chem Neurosci; 2017 Sep; 8(9):1880-1888. PubMed ID: 28617576
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Short-range differential pulse voltammetry for fast, selective analysis of basal levels of cerebral compounds in vivo.
    Crespi F; Möbius C; Neudeck A
    J Neurosci Methods; 1993 Nov; 50(2):225-35. PubMed ID: 7509018
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Ability of the Ca2+-selective microelectrodes to measure fast and local Ca2+ transients in nerve cells.
    Levy S; Tillotson D
    Can J Physiol Pharmacol; 1987 May; 65(5):904-14. PubMed ID: 2441832
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Extracellular dopamine dynamics in rat caudate-putamen during experimenter-delivered and intracranial self-stimulation.
    Kilpatrick MR; Rooney MB; Michael DJ; Wightman RM
    Neuroscience; 2000; 96(4):697-706. PubMed ID: 10727788
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.