BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 9821970)

  • 1. Autocatalytic activation of human legumain at aspartic acid residues.
    Halfon S; Patel S; Vega F; Zurawski S; Zurawski G
    FEBS Lett; 1998 Oct; 438(1-2):114-8. PubMed ID: 9821970
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activation of human prolegumain by cleavage at a C-terminal asparagine residue.
    Chen JM; Fortunato M; Barrett AJ
    Biochem J; 2000 Dec; 352 Pt 2(Pt 2):327-34. PubMed ID: 11085925
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutagenesis and kinetic studies of a plant cysteine proteinase with an unusual arrangement of acidic amino acids in and around the active site.
    Carter CE; Marriage H; Goodenough PW
    Biochemistry; 2000 Sep; 39(36):11005-13. PubMed ID: 10998237
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multistep autoactivation of asparaginyl endopeptidase in vitro and in vivo.
    Li DN; Matthews SP; Antoniou AN; Mazzeo D; Watts C
    J Biol Chem; 2003 Oct; 278(40):38980-90. PubMed ID: 12860980
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid kinetic studies and structural determination of a cysteine proteinase mutant imply that residue 158 in caricain has a major effect upon the ability of the active site histidine to protonate a dipyridyl probe.
    Katerelos NA; Goodenough PW
    Biochemistry; 1996 Nov; 35(47):14763-72. PubMed ID: 8942638
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Autocatalytic processing of pro-papaya proteinase IV is prevented by crowding of the active-site cleft.
    Baker KC; Taylor MA; Cummings NJ; Tuñón MA; Worboys KA; Connerton IF
    Protein Eng; 1996 Jun; 9(6):525-9. PubMed ID: 8862553
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of the active site of legumain links it to caspases, clostripain and gingipains in a new clan of cysteine endopeptidases.
    Chen JM; Rawlings ND; Stevens RA; Barrett AJ
    FEBS Lett; 1998 Dec; 441(3):361-5. PubMed ID: 9891971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification and functional characterization of legumain in amphioxus Branchiostoma belcheri.
    Teng L; Wada H; Zhang S
    Biosci Rep; 2009 Dec; 30(3):177-86. PubMed ID: 19552625
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of critical amino acids within the foot-and-mouth disease virus leader protein, a cysteine protease.
    Roberts PJ; Belsham GJ
    Virology; 1995 Oct; 213(1):140-6. PubMed ID: 7483257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Legumain from bovine kidney: its purification, molecular cloning, immunohistochemical localization and degradation of annexin II and vitamin D-binding protein.
    Yamane T; Takeuchi K; Yamamoto Y; Li YH; Fujiwara M; Nishi K; Takahashi S; Ohkubo I
    Biochim Biophys Acta; 2002 Apr; 1596(1):108-20. PubMed ID: 11983426
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Substitution of cysteine-153 ligated to the catalytic zinc in yeast alcohol dehydrogenase with aspartic acid and analysis of mechanisms of related medium chain dehydrogenases.
    Kim K; Plapp BV
    Chem Biol Interact; 2019 Apr; 302():172-182. PubMed ID: 30721696
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of strictly conserved histidine and arginine residues as part of the active site in Petunia hybrida flavanone 3beta-hydroxylase.
    Lukacin R; Britsch L
    Eur J Biochem; 1997 Nov; 249(3):748-57. PubMed ID: 9395322
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cloning and expression of the cathepsin F-like cysteine protease gene in Escherichia coli and its characterization.
    Joo HS; Koo KB; Park KI; Bae SH; Yun JW; Chang CS; Choi JW
    J Microbiol; 2007 Apr; 45(2):158-67. PubMed ID: 17483802
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contribution to activity of histidine-aromatic, amide-aromatic, and aromatic-aromatic interactions in the extended catalytic site of cysteine proteinases.
    Brömme D; Bonneau PR; Purisima E; Lachance P; Hajnik S; Thomas DY; Storer AC
    Biochemistry; 1996 Apr; 35(13):3970-9. PubMed ID: 8672429
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cloning, isolation, and characterization of mammalian legumain, an asparaginyl endopeptidase.
    Chen JM; Dando PM; Rawlings ND; Brown MA; Young NE; Stevens RA; Hewitt E; Watts C; Barrett AJ
    J Biol Chem; 1997 Mar; 272(12):8090-8. PubMed ID: 9065484
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring the role of putative active site amino acids and pro-region motif of recombinant falcipain-2: a principal hemoglobinase of Plasmodium falciparum.
    Kumar A; Dasaradhi PV; Chauhan VS; Malhotra P
    Biochem Biophys Res Commun; 2004 Apr; 317(1):38-45. PubMed ID: 15047145
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic cysteine residues of ER-60 protease.
    Okudo H; Urade R; Moriyama T; Kito M
    FEBS Lett; 2000 Jan; 465(2-3):145-7. PubMed ID: 10631322
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activation of legumain involves proteolytic and conformational events, resulting in a context- and substrate-dependent activity profile.
    Dall E; Brandstetter H
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2012 Jan; 68(Pt 1):24-31. PubMed ID: 22232165
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The proteasome activator 11 S REG or PA28: chimeras implicate carboxyl-terminal sequences in oligomerization and proteasome binding but not in the activation of specific proteasome catalytic subunits.
    Li J; Gao X; Joss L; Rechsteiner M
    J Mol Biol; 2000 Jun; 299(3):641-54. PubMed ID: 10835274
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of aspartate-133 and histidine-458 in the mechanism of tryptophan indole-lyase from Proteus vulgaris.
    Demidkina TV; Zakomirdina LN; Kulikova VV; Dementieva IS; Faleev NG; Ronda L; Mozzarelli A; Gollnick PD; Phillips RS
    Biochemistry; 2003 Sep; 42(38):11161-9. PubMed ID: 14503866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.