These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 9822375)

  • 21. Time-domain and spectral-domain investigation of inflection-point slow-light modes in photonic crystal coupled waveguides.
    Huang SC; Kato M; Kuramochi E; Lee CP; Notomi M
    Opt Express; 2007 Mar; 15(6):3543-9. PubMed ID: 19532597
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Double-stage guided-mode converter for pure TM-mode guiding in pillar photonic-crystal waveguide devices.
    Tokushima M; Arakawa Y
    Opt Express; 2017 Jul; 25(15):17995-18008. PubMed ID: 28789287
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Leakage properties of photonic crystal fibers.
    Ferrarini D; Vincetti L; Zoboli M; Cucinotta A; Selleri S
    Opt Express; 2002 Nov; 10(23):1314-9. PubMed ID: 19451994
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Anomalous propagation loss in photonic crystal waveguides.
    Li ZY; Ho KM
    Phys Rev Lett; 2004 Feb; 92(6):063904. PubMed ID: 14995241
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dynamic cross-waveguide optical switching with a nonlinear photonic band-gap structure.
    Scholz S; Hess O; Ruhle R
    Opt Express; 1998 Jul; 3(1):28-34. PubMed ID: 19381234
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Simultaneous guidance of slow photons and slow acoustic phonons in silicon phoxonic crystal slabs.
    Laude V; Beugnot JC; Benchabane S; Pennec Y; Djafari-Rouhani B; Papanikolaou N; Escalante JM; Martinez A
    Opt Express; 2011 May; 19(10):9690-8. PubMed ID: 21643226
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Gap maps and intrinsic diffraction losses in one-dimensional photonic crystal slabs.
    Gerace D; Andreani LC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 May; 69(5 Pt 2):056603. PubMed ID: 15244959
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Slow light and chromatic temporal dispersion in photonic crystal waveguides using femtosecond time of flight.
    Finlayson CE; Cattaneo F; Perney NM; Baumberg JJ; Netti MC; Zoorob ME; Charlton MD; Parker GJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jan; 73(1 Pt 2):016619. PubMed ID: 16486307
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Study on Nonlinear Spectral Properties of Photonic Crystal Fiber in Theory and Experiment].
    Zhao XT; Wang ST; Liu XX; Han Y; Zhao YY; Li SG; Hou LT
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Jun; 36(6):1650-5. PubMed ID: 30052365
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Liquid core photonic crystal fiber with low-refractive-index liquids for optofluidic applications.
    Park J; Kang DE; Paulson B; Nazari T; Oh K
    Opt Express; 2014 Jul; 22(14):17320-30. PubMed ID: 25090545
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Switching intense laser pulses guided by Kerr-effect-modified modes of a hollow-core photonic-crystal fiber.
    Zheltikova DA; Scalora M; Zheltikov AM; Bloemer MJ; Shneider MN; D'Aguanno G; Miles RB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Feb; 71(2 Pt 2):026609. PubMed ID: 15783443
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High index contrast semiconductor ARROW and hybrid ARROW fibers.
    Healy N; Sparks JR; He RR; Sazio PJ; Badding JV; Peacock AC
    Opt Express; 2011 May; 19(11):10979-85. PubMed ID: 21643359
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Wideband and low-dispersion engineered slow light using liquid infiltration of a modified photonic crystal waveguide.
    Pourmand M; Karimkhani A; Nazari F
    Appl Opt; 2016 Dec; 55(35):10060-10066. PubMed ID: 27958417
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Visualizing the photonic band gap in hollow core photonic crystal fibers.
    Couny F; Sabert H; Roberts P; Williams DP; Tomlinson A; Mangan B; Farr L; Knight J; Birks T; Russell PS
    Opt Express; 2005 Jan; 13(2):558-63. PubMed ID: 19488385
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Band gap characterization and slow light effects in one dimensional photonic crystals based on silicon slot-waveguides.
    Riboli F; Bettotti P; Pavesi L
    Opt Express; 2007 Sep; 15(19):11769-75. PubMed ID: 19547539
    [TBL] [Abstract][Full Text] [Related]  

  • 36. TM and TE propagating modes of photonic crystal waveguide based on honeycomb lattices.
    Mao H; Wang J; Yu K; Zhu Z
    Appl Opt; 2010 Dec; 49(34):6597-601. PubMed ID: 21124536
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evanescent-field spectroscopy using structured optical fibers: detection of charge-transfer at the porphyrin-silica interface.
    Martelli C; Canning J; Reimers JR; Sintic M; Stocks D; Khoury T; Crossley MJ
    J Am Chem Soc; 2009 Mar; 131(8):2925-33. PubMed ID: 19203267
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Photonic band-gap formation by optical-phase-mask lithography.
    Chan TY; Toader O; John S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Apr; 73(4 Pt 2):046610. PubMed ID: 16711945
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Doped colloidal photonic crystal structure with refractive index chirping to the [111] crystallographic axis.
    Park JH; Choi WS; Koo HY; Hong JC; Kim DY
    Langmuir; 2006 Jan; 22(1):94-100. PubMed ID: 16378406
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Efficient coupling to chalcogenide glass photonic crystal waveguides via silica optical fiber nanowires.
    Grillet C; Smith C; Freeman D; Madden S; Luther-Davies B; Magi E; Moss D; Eggleton B
    Opt Express; 2006 Feb; 14(3):1070-8. PubMed ID: 19503428
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.