BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 9822627)

  • 1. Pig heart fumarase contains two distinct substrate-binding sites differing in affinity.
    Beeckmans S; Van Driessche E
    J Biol Chem; 1998 Nov; 273(48):31661-9. PubMed ID: 9822627
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformational changes upon ligand binding in the essential class II fumarase Rv1098c from Mycobacterium tuberculosis.
    Mechaly AE; Haouz A; Miras I; Barilone N; Weber P; Shepard W; Alzari PM; Bellinzoni M
    FEBS Lett; 2012 Jun; 586(11):1606-11. PubMed ID: 22561013
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The modification with tetranitromethane of an essential tyrosine in the active site of pig fumarase.
    Beeckmans S; Kanarek L
    Biochim Biophys Acta; 1983 Mar; 743(3):370-8. PubMed ID: 6830817
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How fumarase recycles after the malate --> fumarate reaction. Insights into the reaction mechanism.
    Rose IA
    Biochemistry; 1998 Dec; 37(51):17651-8. PubMed ID: 9922130
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chicken fumarase. II. Kinetic studies.
    Reyns C; LĂ©onis J
    Biochimie; 1975; 57(2):131-8. PubMed ID: 237577
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pig heart fumarase really does exhibit negative kinetic co-operativity at a constant ionic strength.
    Hasinoff BB; Davey JP
    Biochem J; 1986 May; 235(3):891-3. PubMed ID: 3753451
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystallographic studies of the catalytic and a second site in fumarase C from Escherichia coli.
    Weaver T; Banaszak L
    Biochemistry; 1996 Nov; 35(44):13955-65. PubMed ID: 8909293
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of the allosteric B site in the fumarase reaction.
    Rose IA; Weaver TM
    Proc Natl Acad Sci U S A; 2004 Mar; 101(10):3393-7. PubMed ID: 14990798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new purification procedure for fumarase based of affinity chromatography. Isolation and characterization of pig-liver fumarase.
    Beeckmans S; Kanarek L
    Eur J Biochem; 1977 Sep; 78(2):437-44. PubMed ID: 913407
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Purification and characterization of fumarase from the syntrophic propionate-oxidizing bacterium strain MPOB.
    Van Kuijk BL; Van Loo ND; Arendsen AF; Hagen WR; Stams AJ
    Arch Microbiol; 1996 Feb; 165(2):126-31. PubMed ID: 8593099
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Demonstration of physical interactions between consecutive enzymes of the citric acid cycle and of the aspartate-malate shuttle. A study involving fumarase, malate dehydrogenase, citrate synthesis and aspartate aminotransferase.
    Beeckmans S; Kanarek L
    Eur J Biochem; 1981 Jul; 117(3):527-35. PubMed ID: 7285903
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Equilibrium substrate binding studies of the malic enzyme of pigeon liver. Equivalence of nucleotide sites and anticooperativity associated with the binding of L-malate to the enzyme-manganese(II)-reduced nicotinamide adenine dinucleotide phosphate ternary complex.
    Pry TA; Hsu RY
    Biochemistry; 1980 Mar; 19(5):951-62. PubMed ID: 7356971
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of the catalytic mechanism and estimation of kinetic parameters for fumarase.
    Mescam M; Vinnakota KC; Beard DA
    J Biol Chem; 2011 Jun; 286(24):21100-9. PubMed ID: 21498518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence against a step-wise mechanism for the fumarase-catalysed dehydration of (2S)-malate.
    Jones VT; Lowe G; Potter BV
    Eur J Biochem; 1980 Jul; 108(2):433-7. PubMed ID: 7408860
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of conformational change in the fumarase reaction cycle.
    Rose IA; Warms JV; Yuan RG
    Biochemistry; 1993 Aug; 32(33):8504-11. PubMed ID: 8357797
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The complex allosteric and redox regulation of the fumarate hydratase and malate dehydratase reactions of Arabidopsis thaliana Fumarase 1 and 2 gives clues for understanding the massive accumulation of fumarate.
    Zubimendi JP; Martinatto A; Valacco MP; Moreno S; Andreo CS; Drincovich MF; Tronconi MA
    FEBS J; 2018 Jun; 285(12):2205-2224. PubMed ID: 29688630
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facile alkylation of methionine by benzyl bromide and demonstration of fumarase inactivation accompanied by alkylation of a methionine residue.
    Rogers GA; Shaltiel N; Boyer PD
    J Biol Chem; 1976 Sep; 251(18):5711-7. PubMed ID: 9397
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification and characterization of a novel fumarase gene by metagenome expression cloning from marine microorganisms.
    Jiang C; Wu LL; Zhao GC; Shen PH; Jin K; Hao ZY; Li SX; Ma GF; Luo FF; Hu GQ; Kang WL; Qin XM; Bi YL; Tang XL; Wu B
    Microb Cell Fact; 2010 Nov; 9():91. PubMed ID: 21092234
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular docking and molecular dynamics simulations of fumarate hydratase and its mutant H235N complexed with pyromellitic acid and citrate.
    Subasri S; Chaudhary SK; Sekar K; Kesherwani M; Velmurugan D
    J Bioinform Comput Biol; 2017 Dec; 15(6):1750026. PubMed ID: 29226743
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biochemical characterisation of fumarase C from a unicellular cyanobacterium demonstrating its substrate affinity, altered by an amino acid substitution.
    Katayama N; Takeya M; Osanai T
    Sci Rep; 2019 Jul; 9(1):10629. PubMed ID: 31337820
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.