BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 9822637)

  • 1. Chromatin association of replication protein A.
    Treuner K; Eckerich C; Knippers R
    J Biol Chem; 1998 Nov; 273(48):31744-50. PubMed ID: 9822637
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stability and nuclear distribution of mammalian replication protein A heterotrimeric complex.
    Dimitrova DS; Gilbert DM
    Exp Cell Res; 2000 Feb; 254(2):321-7. PubMed ID: 10640430
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chromatin assembly factor 1 (CAF-1) colocalizes with replication foci in HeLa cell nuclei.
    Krude T
    Exp Cell Res; 1995 Oct; 220(2):304-11. PubMed ID: 7556438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Replication protein A and the Mre11.Rad50.Nbs1 complex co-localize and interact at sites of stalled replication forks.
    Robison JG; Elliott J; Dixon K; Oakley GG
    J Biol Chem; 2004 Aug; 279(33):34802-10. PubMed ID: 15180989
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stimulation of RTH1 nuclease of the yeast Saccharomyces cerevisiae by replication protein A.
    Biswas EE; Zhu FX; Biswas SB
    Biochemistry; 1997 May; 36(20):5955-62. PubMed ID: 9166765
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chromatin assembly in isolated mammalian nuclei.
    Shelton ER; Kang J; Wassarman PM; DePamphilis ML
    Nucleic Acids Res; 1978 Feb; 5(2):349-62. PubMed ID: 634792
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in the subcellular localization of replication initiation proteins and cell cycle proteins during G1- to S-phase transition in mammalian cells.
    Brénot-Bosc F; Gupta S; Margolis RL; Fotedar R
    Chromosoma; 1995 Feb; 103(8):517-27. PubMed ID: 7621701
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in chromatin structure at the replication fork. II The DNPs containing nascent DNA and a transient chromatin modification detected by DNAase I.
    Galili G; Levy A; Jakob KM
    Nucleic Acids Res; 1981 Aug; 9(16):3991-4005. PubMed ID: 6272192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The majority of human replication protein A remains complexed throughout the cell cycle.
    Loo YM; Melendy T
    Nucleic Acids Res; 2000 Sep; 28(17):3354-60. PubMed ID: 10954605
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enrichment of transcribed and newly replicated DNA in soluble chromatin released from nuclei by mild micrococcal nuclease digestion.
    Chambers SA; Rill RL
    Biochim Biophys Acta; 1984 Jun; 782(2):202-9. PubMed ID: 6547059
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics of nuclease digestion of Physarum polycephalum nuclei at different stages of the cell cycle.
    Jalouzot R; Briane D; Ohlenbusch HH; Wilhelm ML; Wilhelm FX
    Eur J Biochem; 1980 Mar; 104(2):423-31. PubMed ID: 6244949
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective interactions of human kin17 and RPA proteins with chromatin and the nuclear matrix in a DNA damage- and cell cycle-regulated manner.
    Miccoli L; Biard DS; Frouin I; Harper F; Maga G; Angulo JF
    Nucleic Acids Res; 2003 Jul; 31(14):4162-75. PubMed ID: 12853634
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of DNA-binding and strand-exchange stimulation properties of y-RPA, a yeast single-strand-DNA-binding protein.
    Alani E; Thresher R; Griffith JD; Kolodner RD
    J Mol Biol; 1992 Sep; 227(1):54-71. PubMed ID: 1522601
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphorylation of replication protein A middle subunit (RPA32) leads to a disassembly of the RPA heterotrimer.
    Treuner K; Findeisen M; Strausfeld U; Knippers R
    J Biol Chem; 1999 May; 274(22):15556-61. PubMed ID: 10336450
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human minichromosome maintenance proteins and human origin recognition complex 2 protein on chromatin.
    Ritzi M; Baack M; Musahl C; Romanowski P; Laskey RA; Knippers R
    J Biol Chem; 1998 Sep; 273(38):24543-9. PubMed ID: 9733749
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNase I and micrococcal nuclease analysis of the tomato proteinase inhibitor I gene in chromatin.
    Conconi A; Ryan CA
    J Biol Chem; 1993 Jan; 268(1):430-5. PubMed ID: 8416948
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mobilization of chromatin-bound Mcm proteins by micrococcal nuclease.
    Richter A; Baack M; Holthoff HP; Ritzi M; Knippers R
    Biol Chem; 1998; 379(8-9):1181-7. PubMed ID: 9792452
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA damage by the enediyne C-1027 results in the inhibition of DNA replication by loss of replication protein A function and activation of DNA-dependent protein kinase.
    Liu JS; Kuo SR; Yin X; Beerman TA; Melendy T
    Biochemistry; 2001 Dec; 40(48):14661-8. PubMed ID: 11724580
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The human origin recognition complex protein 1 dissociates from chromatin during S phase in HeLa cells.
    Kreitz S; Ritzi M; Baack M; Knippers R
    J Biol Chem; 2001 Mar; 276(9):6337-42. PubMed ID: 11102449
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell cycle specific plasmid DNA replication in the nuclear extract of Saccharomyces cerevisiae: modulation by replication protein A and proliferating cell nuclear antigen.
    Mitkova AV; Biswas EE; Biswas SB
    Biochemistry; 2002 Apr; 41(16):5255-65. PubMed ID: 11955075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.