BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

351 related articles for article (PubMed ID: 9822661)

  • 21. Escherichia coli fumarate reductase frdC and frdD mutants. Identification of amino acid residues involved in catalytic activity with quinones.
    Westenberg DJ; Gunsalus RP; Ackrell BA; Sices H; Cecchini G
    J Biol Chem; 1993 Jan; 268(2):815-22. PubMed ID: 8419359
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Inhibitor probes of the quinone binding sites of mammalian complex II and Escherichia coli fumarate reductase.
    Yankovskaya V; Sablin SO; Ramsay RR; Singer TP; Ackrell BA; Cecchini G; Miyoshi H
    J Biol Chem; 1996 Aug; 271(35):21020-4. PubMed ID: 8702865
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The quinone binding site in Escherichia coli succinate dehydrogenase is required for electron transfer to the heme b.
    Tran QM; Rothery RA; Maklashina E; Cecchini G; Weiner JH
    J Biol Chem; 2006 Oct; 281(43):32310-7. PubMed ID: 16950775
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Protein ubiquinone interaction. Synthesis and biological properties of 5-alkyl ubiquinone derivatives.
    He DY; Yu L; Yu CA
    J Biol Chem; 1994 Nov; 269(45):27885-8. PubMed ID: 7961719
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Protein-ubiquinone interaction in bovine heart mitochondrial succinate-cytochrome c reductase. Synthesis and biological properties of fluorine substituted ubiquinone derivatives.
    Yang F; Yu L; He DY; Yu CA
    J Biol Chem; 1991 Nov; 266(31):20863-9. PubMed ID: 1657937
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Crystallographic investigation of the ubiquinone binding site of respiratory Complex II and its inhibitors.
    Huang LS; Lümmen P; Berry EA
    Biochim Biophys Acta Proteins Proteom; 2021 Sep; 1869(9):140679. PubMed ID: 34089891
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Architecture of succinate dehydrogenase and reactive oxygen species generation.
    Yankovskaya V; Horsefield R; Törnroth S; Luna-Chavez C; Miyoshi H; Léger C; Byrne B; Cecchini G; Iwata S
    Science; 2003 Jan; 299(5607):700-4. PubMed ID: 12560550
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of site-directed mutations in Escherichia coli succinate dehydrogenase on the enzyme activity and production of superoxide radicals.
    Zhao Z; Rothery RA; Weiner JH
    Biochem Cell Biol; 2006 Dec; 84(6):1013-21. PubMed ID: 17215887
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Aerobic inactivation of fumarate reductase from Escherichia coli by mutation of the [3Fe-4S]-quinone binding domain.
    Cecchini G; Sices H; Schröder I; Gunsalus RP
    J Bacteriol; 1995 Aug; 177(16):4587-92. PubMed ID: 7642483
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transmembrane topology and axial ligands to hemes in the cytochrome b subunit of Bacillus subtilis succinate:menaquinone reductase.
    Hägerhäll C; Fridén H; Aasa R; Hederstedt L
    Biochemistry; 1995 Sep; 34(35):11080-9. PubMed ID: 7669765
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Succinate dehydrogenase and fumarate reductase from Escherichia coli.
    Cecchini G; Schröder I; Gunsalus RP; Maklashina E
    Biochim Biophys Acta; 2002 Jan; 1553(1-2):140-57. PubMed ID: 11803023
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mass spectrometric analysis of the ubiquinol-binding site in cytochrome bd from Escherichia coli.
    Matsumoto Y; Murai M; Fujita D; Sakamoto K; Miyoshi H; Yoshida M; Mogi T
    J Biol Chem; 2006 Jan; 281(4):1905-12. PubMed ID: 16299377
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fumarate reductase activity of bovine heart succinate-ubiquinone reductase. New assay system and overall properties of the reaction.
    Grivennikova VG; Gavrikova EV; Timoshin AA; Vinogradov AD
    Biochim Biophys Acta; 1993 Jan; 1140(3):282-92. PubMed ID: 8417779
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Differences in protonation of ubiquinone and menaquinone in fumarate reductase from Escherichia coli.
    Maklashina E; Hellwig P; Rothery RA; Kotlyar V; Sher Y; Weiner JH; Cecchini G
    J Biol Chem; 2006 Sep; 281(36):26655-64. PubMed ID: 16829675
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Flavinylation of succinate: ubiquinone oxidoreductase from Saccharomyces cerevisiae.
    Robinson KM; Lemire BD
    Methods Enzymol; 1995; 260():34-51. PubMed ID: 8592458
    [No Abstract]   [Full Text] [Related]  

  • 36. The membrane-integral domain of succinate:quinone oxidoreductases--a secretive haem-containing domain.
    Hederstedt L
    Biochem Soc Trans; 1998 Aug; 26(3):408-13. PubMed ID: 9765888
    [No Abstract]   [Full Text] [Related]  

  • 37. Use of an azido-ubiquinone derivative to identify subunit I as the ubiquinol binding site of the cytochrome d terminal oxidase complex of Escherichia coli.
    Yang FD; Yu L; Yu CA; Lorence RM; Gennis RB
    J Biol Chem; 1986 Nov; 261(32):14987-90. PubMed ID: 3533929
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Subunit IV (Mr = 14,384) of the cytochrome b-c1 complex from Rhodobacter sphaeroides. Cloning, DNA sequencing, and ubiquinone binding domain.
    Usui S; Yu L
    J Biol Chem; 1991 Aug; 266(24):15644-9. PubMed ID: 1651916
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison of catalytic activity and inhibitors of quinone reactions of succinate dehydrogenase (Succinate-ubiquinone oxidoreductase) and fumarate reductase (Menaquinol-fumarate oxidoreductase) from Escherichia coli.
    Maklashina E; Cecchini G
    Arch Biochem Biophys; 1999 Sep; 369(2):223-32. PubMed ID: 10486141
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Subunit 8 of the Saccharomyces cerevisiae cytochrome bc1 complex interacts with succinate-ubiquinone reductase complex.
    Bruel C; Brasseur R; Trumpower BL
    J Bioenerg Biomembr; 1996 Feb; 28(1):59-68. PubMed ID: 8786239
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.