These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
594 related articles for article (PubMed ID: 9822822)
1. Levels of DnaK and DnaJ provide tight control of heat shock gene expression and protein repair in Escherichia coli. Tomoyasu T; Ogura T; Tatsuta T; Bukau B Mol Microbiol; 1998 Nov; 30(3):567-81. PubMed ID: 9822822 [TBL] [Abstract][Full Text] [Related]
2. Heat shock regulation in the ftsH null mutant of Escherichia coli: dissection of stability and activity control mechanisms of sigma32 in vivo. Tatsuta T; Tomoyasu T; Bukau B; Kitagawa M; Mori H; Karata K; Ogura T Mol Microbiol; 1998 Nov; 30(3):583-93. PubMed ID: 9822823 [TBL] [Abstract][Full Text] [Related]
3. Role of region C in regulation of the heat shock gene-specific sigma factor of Escherichia coli, sigma32. Arsène F; Tomoyasu T; Mogk A; Schirra C; Schulze-Specking A; Bukau B J Bacteriol; 1999 Jun; 181(11):3552-61. PubMed ID: 10348869 [TBL] [Abstract][Full Text] [Related]
4. A cycle of binding and release of the DnaK, DnaJ and GrpE chaperones regulates activity of the Escherichia coli heat shock transcription factor sigma32. Gamer J; Multhaup G; Tomoyasu T; McCarty JS; Rüdiger S; Schönfeld HJ; Schirra C; Bujard H; Bukau B EMBO J; 1996 Feb; 15(3):607-17. PubMed ID: 8599944 [TBL] [Abstract][Full Text] [Related]
5. The heat shock response of Escherichia coli. Arsène F; Tomoyasu T; Bukau B Int J Food Microbiol; 2000 Apr; 55(1-3):3-9. PubMed ID: 10791710 [TBL] [Abstract][Full Text] [Related]
6. Synergistic binding of DnaJ and DnaK chaperones to heat shock transcription factor σ32 ensures its characteristic high metabolic instability: implications for heat shock protein 70 (Hsp70)-Hsp40 mode of function. Suzuki H; Ikeda A; Tsuchimoto S; Adachi K; Noguchi A; Fukumori Y; Kanemori M J Biol Chem; 2012 Jun; 287(23):19275-83. PubMed ID: 22496372 [TBL] [Abstract][Full Text] [Related]
7. Regulatory region C of the E. coli heat shock transcription factor, sigma32, constitutes a DnaK binding site and is conserved among eubacteria. McCarty JS; Rüdiger S; Schönfeld HJ; Schneider-Mergener J; Nakahigashi K; Yura T; Bukau B J Mol Biol; 1996 Mar; 256(5):829-37. PubMed ID: 8601834 [TBL] [Abstract][Full Text] [Related]
8. Downregulation of the heat shock response is independent of DnaK and sigma32 levels in Caulobacter crescentus. da Silva AC; Simão RC; Susin MF; Baldini RL; Avedissian M; Gomes SL Mol Microbiol; 2003 Jul; 49(2):541-53. PubMed ID: 12828648 [TBL] [Abstract][Full Text] [Related]
9. Molecular basis for regulation of the heat shock transcription factor sigma32 by the DnaK and DnaJ chaperones. Rodriguez F; Arsène-Ploetze F; Rist W; Rüdiger S; Schneider-Mergener J; Mayer MP; Bukau B Mol Cell; 2008 Nov; 32(3):347-58. PubMed ID: 18995833 [TBL] [Abstract][Full Text] [Related]
10. Differential degradation of Escherichia coli sigma32 and Bradyrhizobium japonicum RpoH factors by the FtsH protease. Urech C; Koby S; Oppenheim AB; Münchbach M; Hennecke H; Narberhaus F Eur J Biochem; 2000 Aug; 267(15):4831-9. PubMed ID: 10903518 [TBL] [Abstract][Full Text] [Related]
11. Cloning and characterization of the dnaK heat shock operon of the marine bacterium Vibrio harveyi. Klein G; Zmijewski M; Krzewska J; Czeczatka M; Lipińska B Mol Gen Genet; 1998 Aug; 259(2):179-89. PubMed ID: 9747709 [TBL] [Abstract][Full Text] [Related]
12. On the mechanism of FtsH-dependent degradation of the sigma 32 transcriptional regulator of Escherichia coli and the role of the Dnak chaperone machine. Blaszczak A; Georgopoulos C; Liberek K Mol Microbiol; 1999 Jan; 31(1):157-66. PubMed ID: 9987118 [TBL] [Abstract][Full Text] [Related]
13. Genetic and biochemical characterization of mutations affecting the carboxy-terminal domain of the Escherichia coli molecular chaperone DnaJ. Goffin L; Georgopoulos C Mol Microbiol; 1998 Oct; 30(2):329-40. PubMed ID: 9791178 [TBL] [Abstract][Full Text] [Related]
14. DnaJ-promoted binding of DnaK to multiple sites on σ32 in the presence of ATP. Noguchi A; Ikeda A; Mezaki M; Fukumori Y; Kanemori M J Bacteriol; 2014 May; 196(9):1694-703. PubMed ID: 24532774 [TBL] [Abstract][Full Text] [Related]
15. Region 2.1 of the Escherichia coli heat-shock sigma factor RpoH (sigma32) is necessary but not sufficient for degradation by the FtsH protease. Obrist M; Milek S; Klauck E; Hengge R; Narberhaus F Microbiology (Reading); 2007 Aug; 153(Pt 8):2560-2571. PubMed ID: 17660420 [TBL] [Abstract][Full Text] [Related]
16. Regulation of the Escherichia coli heat-shock response. Bukau B Mol Microbiol; 1993 Aug; 9(4):671-80. PubMed ID: 7901731 [TBL] [Abstract][Full Text] [Related]
17. Cloning, sequencing, and expression of dnaK-operon proteins from the thermophilic bacterium Thermus thermophilus. Osipiuk J; Joachimiak A Biochim Biophys Acta; 1997 Sep; 1353(3):253-65. PubMed ID: 9349721 [TBL] [Abstract][Full Text] [Related]
18. Evidence for an active role of the DnaK chaperone system in the degradation of sigma(32). Tatsuta T; Joob DM; Calendar R; Akiyama Y; Ogura T FEBS Lett; 2000 Aug; 478(3):271-5. PubMed ID: 10930581 [TBL] [Abstract][Full Text] [Related]
19. The effect of co-overproduction of DnaK/DnaJ/GrpE and ClpB proteins on the removal of heat-aggregated proteins from Escherichia coli DeltaclpB mutant cells--new insight into the role of Hsp70 in a functional cooperation with Hsp100. Kedzierska S; Matuszewska E FEMS Microbiol Lett; 2001 Nov; 204(2):355-60. PubMed ID: 11731148 [TBL] [Abstract][Full Text] [Related]
20. An essential regulatory function of the DnaK chaperone dictates the decision between proliferation and maintenance in Caulobacter crescentus. Schramm FD; Heinrich K; Thüring M; Bernhardt J; Jonas K PLoS Genet; 2017 Dec; 13(12):e1007148. PubMed ID: 29281627 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]