These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 9822996)

  • 1. Morphological foundations of precartilage development in mesenchyme.
    Wezeman FH
    Microsc Res Tech; 1998 Oct; 43(2):91-101. PubMed ID: 9822996
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in the expression of fibroblast growth factor receptors mark distinct stages of chondrogenesis in vitro and during chick limb skeletal patterning.
    Szebenyi G; Savage MP; Olwin BB; Fallon JF
    Dev Dyn; 1995 Dec; 204(4):446-56. PubMed ID: 8601037
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chondrogenic differentiation in cultures of embryonic rat mesenchyme.
    Langille RM
    Microsc Res Tech; 1994 Aug; 28(6):455-69. PubMed ID: 7949392
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modification of the cell cycle of limb bud mesenchyme during in vitro cartilage differentiation.
    Hadházy C; Szöllösi J
    Acta Biol Hung; 1983; 34(4):407-14. PubMed ID: 6237535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An analysis of the condensation process during chondrogenesis in the embryonic chick hind limb.
    Thorogood PV; Hinchliffe JR
    J Embryol Exp Morphol; 1975 Jun; 33(3):581-606. PubMed ID: 1176861
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adhesion molecules in skeletogenesis: II. Neural cell adhesion molecules mediate precartilaginous mesenchymal condensations and enhance chondrogenesis.
    Widelitz RB; Jiang TX; Murray BA; Chuong CM
    J Cell Physiol; 1993 Aug; 156(2):399-411. PubMed ID: 8344994
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fibronectin mRNA alternative splicing is temporally and spatially regulated during chondrogenesis in vivo and in vitro.
    Gehris AL; Oberlender SA; Shepley KJ; Tuan RS; Bennett VD
    Dev Dyn; 1996 Jun; 206(2):219-30. PubMed ID: 8725289
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chondrogenesis of mandibular mesenchyme from the embryonic chick is inhibited by mandibular epithelium and by epidermal growth factor.
    Coffin-Collins PA; Hall BK
    Int J Dev Biol; 1989 Jun; 33(2):297-311. PubMed ID: 2641350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in cyclic AMP and cyclic GMP levels during in vitro chondrogenesis.
    Hadházy C; László M; Réthy A; Kostenszky K
    Acta Biol Hung; 1983; 34(4):415-24. PubMed ID: 6091379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Embryonic limb mesenchyme micromass culture as an in vitro model for chondrogenesis and cartilage maturation.
    DeLise AM; Stringa E; Woodward WA; Mello MA; Tuan RS
    Methods Mol Biol; 2000; 137():359-75. PubMed ID: 10948551
    [No Abstract]   [Full Text] [Related]  

  • 11. Morphogenetic differences between fore and hind limb precartilage mesenchyme: relation to mechanisms of skeletal pattern formation.
    Downie SA; Newman SA
    Dev Biol; 1994 Mar; 162(1):195-208. PubMed ID: 8125187
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Limb chondrogenesis is compromised in the versican deficient hdf mouse.
    Williams DR; Presar AR; Richmond AT; Mjaatvedt CH; Hoffman S; Capehart AA
    Biochem Biophys Res Commun; 2005 Sep; 334(3):960-6. PubMed ID: 16039617
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ectoderm and mesoderm interactions in the limb bud of the chick embryo studied by transfilter cultures: cartilage differentiation and ultrastructural observations.
    Gumpel-Pinot M
    J Embryol Exp Morphol; 1980 Oct; 59():157-73. PubMed ID: 7217868
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fibroblast growth factors 2, 4, and 8 exert both negative and positive effects on limb, frontonasal, and mandibular chondrogenesis via MEK-ERK activation.
    Bobick BE; Thornhill TM; Kulyk WM
    J Cell Physiol; 2007 Apr; 211(1):233-43. PubMed ID: 17167778
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distinct functions of BMP4 and GDF5 in the regulation of chondrogenesis.
    Hatakeyama Y; Tuan RS; Shum L
    J Cell Biochem; 2004 Apr; 91(6):1204-17. PubMed ID: 15048875
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alterations in the spatiotemporal expression pattern and function of N-cadherin inhibit cellular condensation and chondrogenesis of limb mesenchymal cells in vitro.
    DeLise AM; Tuan RS
    J Cell Biochem; 2002; 87(3):342-59. PubMed ID: 12397616
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heparan sulfate proteoglycans including syndecan-3 modulate BMP activity during limb cartilage differentiation.
    Fisher MC; Li Y; Seghatoleslami MR; Dealy CN; Kosher RA
    Matrix Biol; 2006 Jan; 25(1):27-39. PubMed ID: 16226436
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro analysis of the spatial organization of chondrogenic regions of avian mandibular mesenchyme.
    Langille RM
    Dev Dyn; 1994 Sep; 201(1):55-62. PubMed ID: 7803847
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MEK-ERK signaling plays diverse roles in the regulation of facial chondrogenesis.
    Bobick BE; Kulyk WM
    Exp Cell Res; 2006 Apr; 312(7):1079-92. PubMed ID: 16457813
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell adhesion and chondrogenesis in brachypod mouse limb mesenchyme: fragment fusion studies.
    Duke J; Elmer WA
    J Embryol Exp Morphol; 1978 Dec; 48():161-8. PubMed ID: 744946
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.