These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 9823016)

  • 1. Role of oxygen derived radicals for vascular dysfunction in the diabetic heart: prevention by alpha-tocopherol?
    Rösen P; Du X; Tschöpe D
    Mol Cell Biochem; 1998 Nov; 188(1-2):103-11. PubMed ID: 9823016
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metallothionein suppresses angiotensin II-induced nicotinamide adenine dinucleotide phosphate oxidase activation, nitrosative stress, apoptosis, and pathological remodeling in the diabetic heart.
    Zhou G; Li X; Hein DW; Xiang X; Marshall JP; Prabhu SD; Cai L
    J Am Coll Cardiol; 2008 Aug; 52(8):655-66. PubMed ID: 18702970
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of oxidative stress in the onset and progression of diabetes and its complications: a summary of a Congress Series sponsored by UNESCO-MCBN, the American Diabetes Association and the German Diabetes Society.
    Rösen P; Nawroth PP; King G; Möller W; Tritschler HJ; Packer L
    Diabetes Metab Res Rev; 2001; 17(3):189-212. PubMed ID: 11424232
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Endothelial dysfunction in diabetes mellitus.
    Cosentino F; Lüscher TF
    J Cardiovasc Pharmacol; 1998; 32 Suppl 3():S54-61. PubMed ID: 9883749
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Role of free radicals and reactive nitrogen species in the late complications of diabetes mellitus in rats].
    Stadler K; Jenei V; von Bölcsházy G; Somogyi A; Jakus J
    Orv Hetil; 2004 May; 145(21):1135-40. PubMed ID: 15206194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidative stress and diabetic cardiomyopathy: a brief review.
    Cai L; Kang YJ
    Cardiovasc Toxicol; 2001; 1(3):181-93. PubMed ID: 12213971
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidative stress and diabetic cardiovascular disorders: roles of mitochondria and NADPH oxidase.
    Shen GX
    Can J Physiol Pharmacol; 2010 Mar; 88(3):241-8. PubMed ID: 20393589
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of free radicals, oxidative stress and antioxidant systems in diabetic vascular disease.
    Jakus V
    Bratisl Lek Listy; 2000; 101(10):541-51. PubMed ID: 11218944
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of oxidative stress in diabetic vascular and neural disease.
    Yorek MA
    Free Radic Res; 2003 May; 37(5):471-80. PubMed ID: 12797466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The interleukin-1 receptor antagonist anakinra improves endothelial dysfunction in streptozotocin-induced diabetic rats.
    Vallejo S; Palacios E; Romacho T; Villalobos L; Peiró C; Sánchez-Ferrer CF
    Cardiovasc Diabetol; 2014 Dec; 13():158. PubMed ID: 25518980
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catechin averts experimental diabetes mellitus-induced vascular endothelial structural and functional abnormalities.
    Bhardwaj P; Khanna D; Balakumar P
    Cardiovasc Toxicol; 2014 Mar; 14(1):41-51. PubMed ID: 24048981
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidative stress and diabetic vascular complications.
    Giugliano D; Ceriello A; Paolisso G
    Diabetes Care; 1996 Mar; 19(3):257-67. PubMed ID: 8742574
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lycopene attenuates endothelial dysfunction in streptozotocin-induced diabetic rats by reducing oxidative stress.
    Zhu J; Wang CG; Xu YG
    Pharm Biol; 2011 Nov; 49(11):1144-9. PubMed ID: 21517710
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitric oxide dynamics and endothelial dysfunction in type II model of genetic diabetes.
    Bitar MS; Wahid S; Mustafa S; Al-Saleh E; Dhaunsi GS; Al-Mulla F
    Eur J Pharmacol; 2005 Mar; 511(1):53-64. PubMed ID: 15777779
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Free radicals and antioxidants: physiology, human pathology and therapeutic aspects (part II)].
    Sahnoun Z; Jamoussi K; Zeghal KM
    Therapie; 1998; 53(4):315-39. PubMed ID: 9806002
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vascular NAD(P)H oxidase activation in diabetes: a double-edged sword in redox signalling.
    Gao L; Mann GE
    Cardiovasc Res; 2009 Apr; 82(1):9-20. PubMed ID: 19179352
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Olmesartan prevents cardiovascular injury and hepatic steatosis in obesity and diabetes, accompanied by apoptosis signal regulating kinase-1 inhibition.
    Yamamoto E; Dong YF; Kataoka K; Yamashita T; Tokutomi Y; Matsuba S; Ichijo H; Ogawa H; Kim-Mitsuyama S
    Hypertension; 2008 Sep; 52(3):573-80. PubMed ID: 18678790
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neurovascular dysfunction in diabetic rats. Potential contribution of autoxidation and free radicals examined using transition metal chelating agents.
    Cameron NE; Cotter MA
    J Clin Invest; 1995 Aug; 96(2):1159-63. PubMed ID: 7635953
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Importance of advanced glycation end products in diabetes-associated cardiovascular and renal disease.
    Cooper ME
    Am J Hypertens; 2004 Dec; 17(12 Pt 2):31S-38S. PubMed ID: 15607433
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alpha-linolenic acid intake prevents endothelial dysfunction in high-fat diet-fed streptozotocin rats and underlying mechanisms.
    Zhang W; Fu F; Tie R; Liang X; Tian F; Xing W; Li J; Ji L; Xing J; Sun X; Zhang H
    Vasa; 2013 Nov; 42(6):421-8. PubMed ID: 24220118
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.