These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 9823478)

  • 1. Dynamic cortical networks of verbal and spatial working memory: effects of memory load and task practice.
    McEvoy LK; Smith ME; Gevins A
    Cereb Cortex; 1998; 8(7):563-74. PubMed ID: 9823478
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High resolution evoked potential imaging of the cortical dynamics of human working memory.
    Gevins A; Smith ME; Le J; Leong H; Bennett J; Martin N; McEvoy L; Du R; Whitfield S
    Electroencephalogr Clin Neurophysiol; 1996 Apr; 98(4):327-48. PubMed ID: 8641154
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Slow cortical potentials during retention of object, spatial, and verbal information.
    Bosch V; Mecklinger A; Friederici AD
    Brain Res Cogn Brain Res; 2001 Jan; 10(3):219-37. PubMed ID: 11167047
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bilateral generic working memory circuit requires left-lateralized addition for verbal processing.
    Ray MK; Mackay CE; Harmer CJ; Crow TJ
    Cereb Cortex; 2008 Jun; 18(6):1421-8. PubMed ID: 17947348
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-resolution EEG mapping of cortical activation related to working memory: effects of task difficulty, type of processing, and practice.
    Gevins A; Smith ME; McEvoy L; Yu D
    Cereb Cortex; 1997 Jun; 7(4):374-85. PubMed ID: 9177767
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transfer after Dual n-Back Training Depends on Striatal Activation Change.
    Salminen T; Kühn S; Frensch PA; Schubert T
    J Neurosci; 2016 Sep; 36(39):10198-213. PubMed ID: 27683914
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neuroanatomic overlap of working memory and spatial attention networks: a functional MRI comparison within subjects.
    LaBar KS; Gitelman DR; Parrish TB; Mesulam M
    Neuroimage; 1999 Dec; 10(6):695-704. PubMed ID: 10600415
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Working memory training and perceptual discrimination training impact overlapping and distinct neurocognitive processes: Evidence from event-related potentials and transfer of training gains.
    Covey TJ; Shucard JL; Shucard DW
    Cognition; 2019 Jan; 182():50-72. PubMed ID: 30218913
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Normative shifts of cortical mechanisms of encoding contribute to adult age differences in visual-spatial working memory.
    Störmer VS; Li SC; Heekeren HR; Lindenberger U
    Neuroimage; 2013 Jun; 73():167-75. PubMed ID: 23415947
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A male advantage for spatial and object but not verbal working memory using the n-back task.
    Lejbak L; Crossley M; Vrbancic M
    Brain Cogn; 2011 Jun; 76(1):191-6. PubMed ID: 21411205
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mapping of the neuronal networks of human cortical brain functions.
    Momjian S; Seghier M; Seeck M; Michel CM
    Adv Tech Stand Neurosurg; 2003; 28():91-142. PubMed ID: 12627809
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential influences of negative emotion on spatial and verbal working memory: Evidence from event-related potential and source current density analysis.
    Li X; Li X; Luo YJ
    Neuroreport; 2006 Oct; 17(14):1555-9. PubMed ID: 16957607
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Common neural substrates for visual working memory and attention.
    Mayer JS; Bittner RA; Nikolić D; Bledowski C; Goebel R; Linden DE
    Neuroimage; 2007 Jun; 36(2):441-53. PubMed ID: 17462914
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatiotemporal dynamics of component processes in human working memory.
    Gevins A; Cutillo B
    Electroencephalogr Clin Neurophysiol; 1993 Sep; 87(3):128-43. PubMed ID: 7691540
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of working memory load on electrophysiological markers of visuospatial orienting in a spatial cueing task simulating a traffic situation.
    Vossen AY; Ross V; Jongen EM; Ruiter RA; Smulders FT
    Psychophysiology; 2016 Feb; 53(2):237-51. PubMed ID: 26524126
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lateralized contribution of prefrontal cortex in controlling task-irrelevant information during verbal and spatial working memory tasks: rTMS evidence.
    Sandrini M; Rossini PM; Miniussi C
    Neuropsychologia; 2008; 46(7):2056-63. PubMed ID: 18336847
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cortical generators of slow evoked responses elicited by spatial and nonspatial auditory working memory tasks.
    Anurova I; Artchakov D; Korvenoja A; Ilmoniemi RJ; Aronen HJ; Carlson S
    Clin Neurophysiol; 2005 Jul; 116(7):1644-54. PubMed ID: 15897006
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Task- and stimulus-related cortical networks in language production: Exploring similarity of MEG- and fMRI-derived functional connectivity.
    Liljeström M; Stevenson C; Kujala J; Salmelin R
    Neuroimage; 2015 Oct; 120():75-87. PubMed ID: 26169324
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stage effects of negative emotion on spatial and verbal working memory.
    Li X; Chan RC; Luo YJ
    BMC Neurosci; 2010 May; 11():60. PubMed ID: 20459640
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synchronized brain activity during rehearsal and short-term memory disruption by irrelevant speech is affected by recall mode.
    Kopp F; Schröger E; Lipka S
    Int J Psychophysiol; 2006 Aug; 61(2):188-203. PubMed ID: 16298003
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.