These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
238 related articles for article (PubMed ID: 9823548)
1. Critical evaluation of the use of hydroethidine as a measure of superoxide anion radical. Benov L; Sztejnberg L; Fridovich I Free Radic Biol Med; 1998 Nov; 25(7):826-31. PubMed ID: 9823548 [TBL] [Abstract][Full Text] [Related]
2. Superoxide reacts with hydroethidine but forms a fluorescent product that is distinctly different from ethidium: potential implications in intracellular fluorescence detection of superoxide. Zhao H; Kalivendi S; Zhang H; Joseph J; Nithipatikom K; Vásquez-Vivar J; Kalyanaraman B Free Radic Biol Med; 2003 Jun; 34(11):1359-68. PubMed ID: 12757846 [TBL] [Abstract][Full Text] [Related]
3. Lucigenin (bis-N-methylacridinium) as a mediator of superoxide anion production. Liochev SI; Fridovich I Arch Biochem Biophys; 1997 Jan; 337(1):115-20. PubMed ID: 8990275 [TBL] [Abstract][Full Text] [Related]
4. HPLC-based monitoring of products formed from hydroethidine-based fluorogenic probes--the ultimate approach for intra- and extracellular superoxide detection. Kalyanaraman B; Dranka BP; Hardy M; Michalski R; Zielonka J Biochim Biophys Acta; 2014 Feb; 1840(2):739-44. PubMed ID: 23668959 [TBL] [Abstract][Full Text] [Related]
5. HPLC-Based Monitoring of Oxidation of Hydroethidine for the Detection of NADPH Oxidase-Derived Superoxide Radical Anion. Zielonka J; Zielonka M; Kalyanaraman B Methods Mol Biol; 2019; 1982():243-258. PubMed ID: 31172476 [TBL] [Abstract][Full Text] [Related]
6. Editorial commentary on "Superoxide reacts with hydroethidine but forms a fluorescent product that is distinctly different from ethidium: potential implications in intracellular fluorescence detection of superoxide" by H. Zhao et al. Fridovich I Free Radic Biol Med; 2003 Jun; 34(11):1357-8. PubMed ID: 12757845 [No Abstract] [Full Text] [Related]
7. The confounding effects of light, sonication, and Mn(III)TBAP on quantitation of superoxide using hydroethidine. Zielonka J; Vasquez-Vivar J; Kalyanaraman B Free Radic Biol Med; 2006 Oct; 41(7):1050-7. PubMed ID: 16962930 [TBL] [Abstract][Full Text] [Related]
8. The fluorescence detection of superoxide radical using hydroethidine could be complicated by the presence of heme proteins. Papapostolou I; Patsoukis N; Georgiou CD Anal Biochem; 2004 Sep; 332(2):290-8. PubMed ID: 15325298 [TBL] [Abstract][Full Text] [Related]
9. Flow cytometric analysis of respiratory burst activity in phagocytes with hydroethidine and 2',7'-dichlorofluorescin. Rothe G; Valet G J Leukoc Biol; 1990 May; 47(5):440-8. PubMed ID: 2159514 [TBL] [Abstract][Full Text] [Related]
10. Superoxide from glucose oxidase or from nitroblue tetrazolium? Liochev SI; Fridovich I Arch Biochem Biophys; 1995 Apr; 318(2):408-10. PubMed ID: 7733670 [TBL] [Abstract][Full Text] [Related]
11. Mechanistic similarities between oxidation of hydroethidine by Fremy's salt and superoxide: stopped-flow optical and EPR studies. Zielonka J; Zhao H; Xu Y; Kalyanaraman B Free Radic Biol Med; 2005 Oct; 39(7):853-63. PubMed ID: 16140206 [TBL] [Abstract][Full Text] [Related]
12. Interference of non-specific peroxidases in the fluorescence detection of superoxide radical by hydroethidine oxidation: a new assay for H2O2. Patsoukis N; Papapostolou I; Georgiou CD Anal Bioanal Chem; 2005 Mar; 381(5):1065-72. PubMed ID: 15690180 [TBL] [Abstract][Full Text] [Related]
13. Cytochrome c-mediated oxidation of hydroethidine and mito-hydroethidine in mitochondria: identification of homo- and heterodimers. Zielonka J; Srinivasan S; Hardy M; Ouari O; Lopez M; Vasquez-Vivar J; Avadhani NG; Kalyanaraman B Free Radic Biol Med; 2008 Mar; 44(5):835-46. PubMed ID: 18155177 [TBL] [Abstract][Full Text] [Related]
14. Hydroethidine- and MitoSOX-derived red fluorescence is not a reliable indicator of intracellular superoxide formation: another inconvenient truth. Zielonka J; Kalyanaraman B Free Radic Biol Med; 2010 Apr; 48(8):983-1001. PubMed ID: 20116425 [TBL] [Abstract][Full Text] [Related]
15. Pulse radiolysis and steady-state analyses of the reaction between hydroethidine and superoxide and other oxidants. Zielonka J; Sarna T; Roberts JE; Wishart JF; Kalyanaraman B Arch Biochem Biophys; 2006 Dec; 456(1):39-47. PubMed ID: 17081495 [TBL] [Abstract][Full Text] [Related]
16. Oxidative chemistry of fluorescent dyes: implications in the detection of reactive oxygen and nitrogen species. Kalyanaraman B Biochem Soc Trans; 2011 Oct; 39(5):1221-5. PubMed ID: 21936793 [TBL] [Abstract][Full Text] [Related]
17. Intracellular hydrogen peroxide and superoxide anion detection in endothelial cells. Carter WO; Narayanan PK; Robinson JP J Leukoc Biol; 1994 Feb; 55(2):253-8. PubMed ID: 8301222 [TBL] [Abstract][Full Text] [Related]
18. Stable Mn(III) porphyrins mimic superoxide dismutase in vitro and substitute for it in vivo. Faulkner KM; Liochev SI; Fridovich I J Biol Chem; 1994 Sep; 269(38):23471-6. PubMed ID: 8089112 [TBL] [Abstract][Full Text] [Related]
19. Recent developments in detection of superoxide radical anion and hydrogen peroxide: Opportunities, challenges, and implications in redox signaling. Kalyanaraman B; Hardy M; Podsiadly R; Cheng G; Zielonka J Arch Biochem Biophys; 2017 Mar; 617():38-47. PubMed ID: 27590268 [TBL] [Abstract][Full Text] [Related]