These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 9823548)

  • 21. Manganese superoxide dismutase deficiency exacerbates cerebral infarction after focal cerebral ischemia/reperfusion in mice: implications for the production and role of superoxide radicals.
    Kim GW; Kondo T; Noshita N; Chan PH
    Stroke; 2002 Mar; 33(3):809-15. PubMed ID: 11872908
    [TBL] [Abstract][Full Text] [Related]  

  • 22. HPLC study of oxidation products of hydroethidine in chemical and biological systems: ramifications in superoxide measurements.
    Zielonka J; Hardy M; Kalyanaraman B
    Free Radic Biol Med; 2009 Feb; 46(3):329-38. PubMed ID: 19026738
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mitochondrial membrane potential and hydroethidine-monitored superoxide generation in cultured cerebellar granule cells.
    Budd SL; Castilho RF; Nicholls DG
    FEBS Lett; 1997 Sep; 415(1):21-4. PubMed ID: 9326361
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Detection of 2-hydroxyethidium in cellular systems: a unique marker product of superoxide and hydroethidine.
    Zielonka J; Vasquez-Vivar J; Kalyanaraman B
    Nat Protoc; 2008; 3(1):8-21. PubMed ID: 18193017
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Lucigenin luminescence as a measure of intracellular superoxide dismutase activity in Escherichia coli.
    Liochev SI; Fridovich I
    Proc Natl Acad Sci U S A; 1997 Apr; 94(7):2891-6. PubMed ID: 9096317
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The role of superoxide anion generation in phagocytic bactericidal activity. Studies with normal and chronic granulomatous disease leukocytes.
    Johnston RB; Keele BB; Misra HP; Lehmeyer JE; Webb LS; Baehner RL; RaJagopalan KV
    J Clin Invest; 1975 Jun; 55(6):1357-72. PubMed ID: 166094
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A simplified hydroethidine method for fast and accurate detection of superoxide production in isolated mitochondria.
    Back P; Matthijssens F; Vanfleteren JR; Braeckman BP
    Anal Biochem; 2012 Apr; 423(1):147-51. PubMed ID: 22310498
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Novel high-throughput assay for antioxidant capacity against superoxide anion.
    Zhang L; Huang D; Kondo M; Fan E; Ji H; Kou Y; Ou B
    J Agric Food Chem; 2009 Apr; 57(7):2661-7. PubMed ID: 19275163
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A quantitative test for superoxide radicals produced in biological systems.
    Kuthan H; Ullrich V; Estabrook RW
    Biochem J; 1982 Jun; 203(3):551-8. PubMed ID: 6288006
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Superoxide production in rat hippocampal neurons: selective imaging with hydroethidine.
    Bindokas VP; Jordán J; Lee CC; Miller RJ
    J Neurosci; 1996 Feb; 16(4):1324-36. PubMed ID: 8778284
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The kinetics of the reduction of cytochrome c by the superoxide anion radical.
    Koppenol WH; van Buuren KJ; Butler J; Braams R
    Biochim Biophys Acta; 1976 Nov; 449(2):157-68. PubMed ID: 10982
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The tetrazolium dyes MTS and XTT provide new quantitative assays for superoxide and superoxide dismutase.
    Sutherland MW; Learmonth BA
    Free Radic Res; 1997 Sep; 27(3):283-9. PubMed ID: 9350432
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Toxicity of 1-methyl-4-phenylpyridinium derivatives in Escherichia coli.
    Mitsumoto A; Nagano T; Hirobe M
    Arch Biochem Biophys; 1992 Aug; 296(2):482-8. PubMed ID: 1321585
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Oxygen radicals mediate cell inactivation by acridine dyes, fluorescein, and lucifer yellow CH.
    Martin JP; Logsdon N
    Photochem Photobiol; 1987 Jul; 46(1):45-53. PubMed ID: 3039547
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Difference in superoxide toxicity between 4,7-dicyanobenzofurazan and paraquat.
    Takabatake T; Hasegawa M; Nagano T; Hirobe M
    J Biol Chem; 1992 Mar; 267(7):4613-8. PubMed ID: 1311315
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Endothelial-derived superoxide anions in pig coronary arteries: evidence from lucigenin chemiluminescence and histochemical techniques.
    Brandes RP; Barton M; Philippens KM; Schweitzer G; Mügge A
    J Physiol; 1997 Apr; 500 ( Pt 2)(Pt 2):331-42. PubMed ID: 9147321
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Superoxide anion generation by in situ perfused rat liver: effect of in vivo endotoxin.
    Bautista AP; Spitzer JJ
    Am J Physiol; 1990 Dec; 259(6 Pt 1):G907-12. PubMed ID: 2175553
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The role of superoxide radical in the autoxidation of cytochrome c.
    Cassell RH; Fridovich I
    Biochemistry; 1975 May; 14(9):1866-8. PubMed ID: 164898
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Assessment of ferrocytochrome C oxidation by hydrogen peroxide.
    Kownatzki E; Uhrich S; Bethke P
    Agents Actions; 1991 Nov; 34(3-4):393-6. PubMed ID: 1667246
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modulatory role of nitric oxide on superoxide-dependent luminol chemiluminescence.
    Castro L; Alvarez MN; Radi R
    Arch Biochem Biophys; 1996 Sep; 333(1):179-88. PubMed ID: 8806769
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.