These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 9823724)

  • 41. Does layering minimize shrinkage stresses in composite restorations?
    Kuijs RH; Fennis WM; Kreulen CM; Barink M; Verdonschot N
    J Dent Res; 2003 Dec; 82(12):967-71. PubMed ID: 14630896
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Flexural properties of experimental nanofiber reinforced composite are affected by resin composition and nanofiber/resin ratio.
    Vidotti HA; Manso AP; Leung V; do Valle AL; Ko F; Carvalho RM
    Dent Mater; 2015 Sep; 31(9):1132-41. PubMed ID: 26187528
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Computational modeling of fatigue crack propagation in butt welded joints subjected to axial load.
    Araque O; Arzola N; VarĂ³n O
    PLoS One; 2019; 14(6):e0218973. PubMed ID: 31247041
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Stress analysis of metal-free polymer crowns using the three-dimensional finite element method.
    Nakamura T; Imanishi A; Kashima H; Ohyama T; Ishigaki S
    Int J Prosthodont; 2001; 14(5):401-5. PubMed ID: 12066632
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Stress analysis in bone tissue around single implants with different diameters and veneering materials: a 3-D finite element study.
    Santiago Junior JF; Pellizzer EP; Verri FR; de Carvalho PS
    Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4700-14. PubMed ID: 24094178
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Corono-radicular reconstruction of pulpless teeth: a mechanical study using finite element analysis.
    Pierrisnard L; Bohin F; Renault P; Barquins M
    J Prosthet Dent; 2002 Oct; 88(4):442-8. PubMed ID: 12447223
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Modeling of ultrathin occlusal veneers.
    Magne P; Stanley K; Schlichting LH
    Dent Mater; 2012 Jul; 28(7):777-82. PubMed ID: 22575740
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A comparison of fatigue crack growth in resin composite, dentin and the interface.
    Soappman MJ; Nazari A; Porter JA; Arola D
    Dent Mater; 2007 May; 23(5):608-14. PubMed ID: 16806452
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Influence of carboxylic anhydrides on selected mechanical properties of heat-cured resin composites.
    Peutzfeldt A; Asmussen E
    J Dent Res; 1991 Dec; 70(12):1537-41. PubMed ID: 1837796
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A finite element model on effects of impact load and cavitation on fatigue crack propagation in mechanical bileaflet aortic heart valve.
    Mohammadi H; Klassen RJ; Wan WK
    Proc Inst Mech Eng H; 2008 Oct; 222(7):1115-25. PubMed ID: 19024159
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Stress distribution in molars restored with inlays or onlays with or without endodontic treatment: a three-dimensional finite element analysis.
    Jiang W; Bo H; Yongchun G; LongXing N
    J Prosthet Dent; 2010 Jan; 103(1):6-12. PubMed ID: 20105674
    [TBL] [Abstract][Full Text] [Related]  

  • 52. R-curve behavior and micromechanisms of fracture in resin based dental restorative composites.
    Shah MB; Ferracane JL; Kruzic JJ
    J Mech Behav Biomed Mater; 2009 Oct; 2(5):502-11. PubMed ID: 19627857
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Variables affecting the fracture toughness of dental composites.
    Ferracane JL; Antonio RC; Matsumoto H
    J Dent Res; 1987 Jun; 66(6):1140-5. PubMed ID: 3476585
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Performance of the experimental resins and dental nanocomposites at varying deformation rates.
    Kumar N; Shortall A
    J Investig Clin Dent; 2014 Aug; 5(3):237-42. PubMed ID: 23766028
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A method to investigate the shrinkage stress developed by resin-composites bonded to a single flat surface.
    Pabis LV; Xavier TA; Rosa EF; Rodrigues FP; Meira JB; Lima RG; Rodrigues Filho LE; Ballester RY
    Dent Mater; 2012 Apr; 28(4):e27-34. PubMed ID: 22336142
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Influence of Stress Intensity Factor on Rail Fatigue Crack Propagation by Finite Element Method.
    Gao R; Liu M; Wang B; Wang Y; Shao W
    Materials (Basel); 2021 Sep; 14(19):. PubMed ID: 34640108
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Microfracture mechanisms of dental resin composites containing spherically-shaped filler particles.
    Kim KH; Park JH; Imai Y; Kishi T
    J Dent Res; 1994 Feb; 73(2):499-504. PubMed ID: 8120212
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A mathematical analysis of shrinkage stress development in dental composite restorations during resin polymerization.
    Li J; Li H; Fok SL
    Dent Mater; 2008 Jul; 24(7):923-31. PubMed ID: 18191446
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Finite element analysis of indentation tests on pyrolytic carbon.
    Gilpin CB; Haubold AD; Ely JL
    J Heart Valve Dis; 1996 Jun; 5 Suppl 1():S72-8. PubMed ID: 8794040
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Rheological properties of experimental Bis-GMA/TEGDMA flowable resin composites with various macrofiller/microfiller ratio.
    Beun S; Bailly C; Dabin A; Vreven J; Devaux J; Leloup G
    Dent Mater; 2009 Feb; 25(2):198-205. PubMed ID: 18620747
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.