BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 9824161)

  • 41. Complex formation between proteins encoded by the ski gene family.
    Nagase T; Nomura N; Ishii S
    J Biol Chem; 1993 Jun; 268(18):13710-6. PubMed ID: 8514802
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Activation of the c-ski oncogene by overexpression.
    Colmenares C; Sutrave P; Hughes SH; Stavnezer E
    J Virol; 1991 Sep; 65(9):4929-35. PubMed ID: 1870207
    [TBL] [Abstract][Full Text] [Related]  

  • 43. SnoI, a novel alternatively spliced isoform of the ski protooncogene homolog, sno.
    Pearson-White S
    Nucleic Acids Res; 1993 Sep; 21(19):4632-8. PubMed ID: 8233802
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Oncogenic transformation induced by the Qin protein is correlated with transcriptional repression.
    Li J; Thurm H; Chang HW; Iacovoni JS; Vogt PK
    Proc Natl Acad Sci U S A; 1997 Sep; 94(20):10885-8. PubMed ID: 9380729
    [TBL] [Abstract][Full Text] [Related]  

  • 45. T-cell proto-oncogene rhombotin-2 is a complex transcription regulator containing multiple activation and repression domains.
    Mao S; Neale GA; Goorha RM
    J Biol Chem; 1997 Feb; 272(9):5594-9. PubMed ID: 9038167
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Characterization of chicken c-ski oncogene products expressed by retrovirus vectors.
    Sutrave P; Copeland TD; Showalter SD; Hughes SH
    Mol Cell Biol; 1990 Jun; 10(6):3137-44. PubMed ID: 2188109
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Mapping activation and repression domains of the vnd/NK-2 homeodomain protein.
    Stepchenko A; Nirenberg M
    Proc Natl Acad Sci U S A; 2004 Sep; 101(36):13180-5. PubMed ID: 15340160
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The many faces of SAM.
    Qiao F; Bowie JU
    Sci STKE; 2005 May; 2005(286):re7. PubMed ID: 15928333
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Inhibition of hTAFII32-binding implicated in the transcriptional repression by central regions of mutant p53 proteins.
    Tung SF; Chuang JY; Lin CT; Lai MY; Wu CW; Lin YS
    J Biol Chem; 1999 Mar; 274(12):7748-55. PubMed ID: 10075665
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Proto-oncogene Sno expression, alternative isoforms and immediate early serum response.
    Pearson-White S; Crittenden R
    Nucleic Acids Res; 1997 Jul; 25(14):2930-7. PubMed ID: 9207045
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The crystal structure of the Dachshund domain of human SnoN reveals flexibility in the putative protein interaction surface.
    Nyman T; Trésaugues L; Welin M; Lehtiö L; Flodin S; Persson C; Johansson I; Hammarström M; Nordlund P
    PLoS One; 2010 Sep; 5(9):e12907. PubMed ID: 20957027
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A mechanistic insight on how Compromised Hydrolysis of Triacylglycerol 7 (CHT7) restrains the involvement of it's CXC domain from quiescence repression.
    Chauhan M; Arshi SA; Narayanan N; Arfin HU; Sharma A
    Int J Biol Macromol; 2024 Apr; 265(Pt 1):130844. PubMed ID: 38484809
    [TBL] [Abstract][Full Text] [Related]  

  • 53.
    Muench DE; Ferchen K; Velu CS; Pradhan K; Chetal K; Chen X; Weirauch MT; Colmenares C; Verma A; Salomonis N; Grimes HL
    Blood; 2018 Nov; 132(21):e24-e34. PubMed ID: 30249787
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Transcriptional cofactors Ski and SnoN are major regulators of the TGF-β/Smad signaling pathway in health and disease.
    Tecalco-Cruz AC; Ríos-López DG; Vázquez-Victorio G; Rosales-Alvarez RE; Macías-Silva M
    Signal Transduct Target Ther; 2018; 3():15. PubMed ID: 29892481
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Bone morphogenetic protein-7 inhibits proximal tubular epithelial cell Smad3 signaling via increased SnoN expression.
    Luo DD; Phillips A; Fraser D
    Am J Pathol; 2010 Mar; 176(3):1139-47. PubMed ID: 20093492
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Arkadia activates Smad3/Smad4-dependent transcription by triggering signal-induced SnoN degradation.
    Levy L; Howell M; Das D; Harkin S; Episkopou V; Hill CS
    Mol Cell Biol; 2007 Sep; 27(17):6068-83. PubMed ID: 17591695
    [TBL] [Abstract][Full Text] [Related]  

  • 57. An efficient strategy to identify early TPA-responsive genes during differentiation of HL-60 cells.
    Hu LY; Tepper CG; Lo SH; Lin WC
    Gene Expr; 2006; 13(3):179-89. PubMed ID: 17193924
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Dual role of SnoN in mammalian tumorigenesis.
    Zhu Q; Krakowski AR; Dunham EE; Wang L; Bandyopadhyay A; Berdeaux R; Martin GS; Sun L; Luo K
    Mol Cell Biol; 2007 Jan; 27(1):324-39. PubMed ID: 17074815
    [TBL] [Abstract][Full Text] [Related]  

  • 59. SnoN expression is differently regulated in microsatellite unstable compared with microsatellite stable colorectal cancers.
    Chia JA; Simms LA; Cozzi SJ; Young J; Jass JR; Walsh MD; Spring KJ; Leggett BA; Whitehall VL
    BMC Cancer; 2006 Oct; 6():252. PubMed ID: 17062133
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Defective T-cell activation is associated with augmented transforming growth factor Beta sensitivity in mice with mutations in the Sno gene.
    Pearson-White S; McDuffie M
    Mol Cell Biol; 2003 Aug; 23(15):5446-59. PubMed ID: 12861029
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.